forked from tyshiwo/DRRN_CVPR17
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sgd_solver.cpp
351 lines (334 loc) · 12.5 KB
/
sgd_solver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#include <string>
#include <vector>
#include "caffe/sgd_solvers.hpp"
#include "caffe/util/hdf5.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/upgrade_proto.hpp"
namespace caffe {
// Return the current learning rate. The currently implemented learning rate
// policies are as follows:
// - fixed: always return base_lr.
// - step: return base_lr * gamma ^ (floor(iter / step))
// - exp: return base_lr * gamma ^ iter
// - inv: return base_lr * (1 + gamma * iter) ^ (- power)
// - multistep: similar to step but it allows non uniform steps defined by
// stepvalue
// - poly: the effective learning rate follows a polynomial decay, to be
// zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)
// - sigmoid: the effective learning rate follows a sigmod decay
// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
//
// where base_lr, max_iter, gamma, step, stepvalue and power are defined
// in the solver parameter protocol buffer, and iter is the current iteration.
template <typename Dtype>
Dtype SGDSolver<Dtype>::GetLearningRate() {
Dtype rate;
const string& lr_policy = this->param_.lr_policy();
if (lr_policy == "fixed") {
rate = this->param_.base_lr();
} else if (lr_policy == "step") {
this->current_step_ = this->iter_ / this->param_.stepsize();
rate = this->param_.base_lr() *
pow(this->param_.gamma(), this->current_step_);
} else if (lr_policy == "exp") {
rate = this->param_.base_lr() * pow(this->param_.gamma(), this->iter_);
} else if (lr_policy == "inv") {
rate = this->param_.base_lr() *
pow(Dtype(1) + this->param_.gamma() * this->iter_,
- this->param_.power());
} else if (lr_policy == "multistep") {
if (this->current_step_ < this->param_.stepvalue_size() &&
this->iter_ >= this->param_.stepvalue(this->current_step_)) {
this->current_step_++;
LOG(INFO) << "MultiStep Status: Iteration " <<
this->iter_ << ", step = " << this->current_step_;
}
rate = this->param_.base_lr() *
pow(this->param_.gamma(), this->current_step_);
} else if (lr_policy == "poly") {
rate = this->param_.base_lr() * pow(Dtype(1.) -
(Dtype(this->iter_) / Dtype(this->param_.max_iter())),
this->param_.power());
} else if (lr_policy == "sigmoid") {
rate = this->param_.base_lr() * (Dtype(1.) /
(Dtype(1.) + exp(-this->param_.gamma() * (Dtype(this->iter_) -
Dtype(this->param_.stepsize())))));
} else {
LOG(FATAL) << "Unknown learning rate policy: " << lr_policy;
}
return rate;
}
template <typename Dtype>
void SGDSolver<Dtype>::PreSolve() {
// Initialize the history
const vector<Blob<Dtype>*>& net_params = this->net_->learnable_params();
history_.clear();
update_.clear();
temp_.clear();
for (int i = 0; i < net_params.size(); ++i) {
const vector<int>& shape = net_params[i]->shape();
history_.push_back(shared_ptr<Blob<Dtype> >(new Blob<Dtype>(shape)));
update_.push_back(shared_ptr<Blob<Dtype> >(new Blob<Dtype>(shape)));
temp_.push_back(shared_ptr<Blob<Dtype> >(new Blob<Dtype>(shape)));
}
}
template <typename Dtype>
void SGDSolver<Dtype>::ClipGradients() {
Dtype rate = GetLearningRate();
const Dtype clip_gradients = this->param_.clip_gradients()/rate;
if (clip_gradients < 0) { return; }
const vector<Blob<Dtype>*>& net_params = this->net_->learnable_params();
Dtype sumsq_diff = 0;
for (int i = 0; i < net_params.size(); ++i) {
sumsq_diff += net_params[i]->sumsq_diff();
}
const Dtype l2norm_diff = std::sqrt(sumsq_diff);
if (l2norm_diff > clip_gradients) {
Dtype scale_factor = clip_gradients / l2norm_diff;
//LOG(INFO) << "Gradient clipping: scaling down gradients (L2 norm " << l2norm_diff << " > " << clip_gradients << ") " << "by scale factor " << scale_factor;
for (int i = 0; i < net_params.size(); ++i) {
net_params[i]->scale_diff(scale_factor);
}
}
}
template <typename Dtype>
void SGDSolver<Dtype>::ApplyUpdate() {
Dtype rate = GetLearningRate();
if (this->param_.display() && this->iter_ % this->param_.display() == 0) {
LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << this->iter_
<< ", lr = " << rate;
}
ClipGradients();
for (int param_id = 0; param_id < this->net_->learnable_params().size();
++param_id) {
Normalize(param_id);
Regularize(param_id);
ComputeUpdateValue(param_id, rate);
}
this->net_->Update();
}
template <typename Dtype>
void SGDSolver<Dtype>::Normalize(int param_id) {
if (this->param_.iter_size() == 1) { return; }
// Scale gradient to counterbalance accumulation.
const vector<Blob<Dtype>*>& net_params = this->net_->learnable_params();
const Dtype accum_normalization = Dtype(1.) / this->param_.iter_size();
switch (Caffe::mode()) {
case Caffe::CPU: {
caffe_scal(net_params[param_id]->count(), accum_normalization,
net_params[param_id]->mutable_cpu_diff());
break;
}
case Caffe::GPU: {
#ifndef CPU_ONLY
caffe_gpu_scal(net_params[param_id]->count(), accum_normalization,
net_params[param_id]->mutable_gpu_diff());
#else
NO_GPU;
#endif
break;
}
default:
LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode();
}
}
template <typename Dtype>
void SGDSolver<Dtype>::Regularize(int param_id) {
const vector<Blob<Dtype>*>& net_params = this->net_->learnable_params();
const vector<float>& net_params_weight_decay =
this->net_->params_weight_decay();
Dtype weight_decay = this->param_.weight_decay();
string regularization_type = this->param_.regularization_type();
Dtype local_decay = weight_decay * net_params_weight_decay[param_id];
switch (Caffe::mode()) {
case Caffe::CPU: {
if (local_decay) {
if (regularization_type == "L2") {
// add weight decay
caffe_axpy(net_params[param_id]->count(),
local_decay,
net_params[param_id]->cpu_data(),
net_params[param_id]->mutable_cpu_diff());
} else if (regularization_type == "L1") {
caffe_cpu_sign(net_params[param_id]->count(),
net_params[param_id]->cpu_data(),
temp_[param_id]->mutable_cpu_data());
caffe_axpy(net_params[param_id]->count(),
local_decay,
temp_[param_id]->cpu_data(),
net_params[param_id]->mutable_cpu_diff());
} else {
LOG(FATAL) << "Unknown regularization type: " << regularization_type;
}
}
break;
}
case Caffe::GPU: {
#ifndef CPU_ONLY
if (local_decay) {
if (regularization_type == "L2") {
// add weight decay
caffe_gpu_axpy(net_params[param_id]->count(),
local_decay,
net_params[param_id]->gpu_data(),
net_params[param_id]->mutable_gpu_diff());
} else if (regularization_type == "L1") {
caffe_gpu_sign(net_params[param_id]->count(),
net_params[param_id]->gpu_data(),
temp_[param_id]->mutable_gpu_data());
caffe_gpu_axpy(net_params[param_id]->count(),
local_decay,
temp_[param_id]->gpu_data(),
net_params[param_id]->mutable_gpu_diff());
} else {
LOG(FATAL) << "Unknown regularization type: " << regularization_type;
}
}
#else
NO_GPU;
#endif
break;
}
default:
LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode();
}
}
#ifndef CPU_ONLY
template <typename Dtype>
void sgd_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum,
Dtype local_rate);
#endif
template <typename Dtype>
void SGDSolver<Dtype>::ComputeUpdateValue(int param_id, Dtype rate) {
const vector<Blob<Dtype>*>& net_params = this->net_->learnable_params();
const vector<float>& net_params_lr = this->net_->params_lr();
Dtype momentum = this->param_.momentum();
Dtype local_rate = rate * net_params_lr[param_id];
// Compute the update to history, then copy it to the parameter diff.
switch (Caffe::mode()) {
case Caffe::CPU: {
caffe_cpu_axpby(net_params[param_id]->count(), local_rate,
net_params[param_id]->cpu_diff(), momentum,
history_[param_id]->mutable_cpu_data());
caffe_copy(net_params[param_id]->count(),
history_[param_id]->cpu_data(),
net_params[param_id]->mutable_cpu_diff());
break;
}
case Caffe::GPU: {
#ifndef CPU_ONLY
sgd_update_gpu(net_params[param_id]->count(),
net_params[param_id]->mutable_gpu_diff(),
history_[param_id]->mutable_gpu_data(),
momentum, local_rate);
#else
NO_GPU;
#endif
break;
}
default:
LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode();
}
}
template <typename Dtype>
void SGDSolver<Dtype>::SnapshotSolverState(const string& model_filename) {
switch (this->param_.snapshot_format()) {
case caffe::SolverParameter_SnapshotFormat_BINARYPROTO:
SnapshotSolverStateToBinaryProto(model_filename);
break;
case caffe::SolverParameter_SnapshotFormat_HDF5:
SnapshotSolverStateToHDF5(model_filename);
break;
default:
LOG(FATAL) << "Unsupported snapshot format.";
}
}
template <typename Dtype>
void SGDSolver<Dtype>::SnapshotSolverStateToBinaryProto(
const string& model_filename) {
SolverState state;
state.set_iter(this->iter_);
state.set_learned_net(model_filename);
state.set_current_step(this->current_step_);
state.clear_history();
for (int i = 0; i < history_.size(); ++i) {
// Add history
BlobProto* history_blob = state.add_history();
history_[i]->ToProto(history_blob);
}
string snapshot_filename = Solver<Dtype>::SnapshotFilename(".solverstate");
LOG(INFO)
<< "Snapshotting solver state to binary proto file " << snapshot_filename;
WriteProtoToBinaryFile(state, snapshot_filename.c_str());
}
template <typename Dtype>
void SGDSolver<Dtype>::SnapshotSolverStateToHDF5(
const string& model_filename) {
string snapshot_filename =
Solver<Dtype>::SnapshotFilename(".solverstate.h5");
LOG(INFO) << "Snapshotting solver state to HDF5 file " << snapshot_filename;
hid_t file_hid = H5Fcreate(snapshot_filename.c_str(), H5F_ACC_TRUNC,
H5P_DEFAULT, H5P_DEFAULT);
CHECK_GE(file_hid, 0)
<< "Couldn't open " << snapshot_filename << " to save solver state.";
hdf5_save_int(file_hid, "iter", this->iter_);
hdf5_save_string(file_hid, "learned_net", model_filename);
hdf5_save_int(file_hid, "current_step", this->current_step_);
hid_t history_hid = H5Gcreate2(file_hid, "history", H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);
CHECK_GE(history_hid, 0)
<< "Error saving solver state to " << snapshot_filename << ".";
for (int i = 0; i < history_.size(); ++i) {
ostringstream oss;
oss << i;
hdf5_save_nd_dataset<Dtype>(history_hid, oss.str(), *history_[i]);
}
H5Gclose(history_hid);
H5Fclose(file_hid);
}
template <typename Dtype>
void SGDSolver<Dtype>::RestoreSolverStateFromBinaryProto(
const string& state_file) {
SolverState state;
ReadProtoFromBinaryFile(state_file, &state);
this->iter_ = state.iter();
if (state.has_learned_net()) {
NetParameter net_param;
ReadNetParamsFromBinaryFileOrDie(state.learned_net().c_str(), &net_param);
this->net_->CopyTrainedLayersFrom(net_param);
}
this->current_step_ = state.current_step();
CHECK_EQ(state.history_size(), history_.size())
<< "Incorrect length of history blobs.";
LOG(INFO) << "SGDSolver: restoring history";
for (int i = 0; i < history_.size(); ++i) {
history_[i]->FromProto(state.history(i));
}
}
template <typename Dtype>
void SGDSolver<Dtype>::RestoreSolverStateFromHDF5(const string& state_file) {
hid_t file_hid = H5Fopen(state_file.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
CHECK_GE(file_hid, 0) << "Couldn't open solver state file " << state_file;
this->iter_ = hdf5_load_int(file_hid, "iter");
if (H5LTfind_dataset(file_hid, "learned_net")) {
string learned_net = hdf5_load_string(file_hid, "learned_net");
this->net_->CopyTrainedLayersFrom(learned_net);
}
this->current_step_ = hdf5_load_int(file_hid, "current_step");
hid_t history_hid = H5Gopen2(file_hid, "history", H5P_DEFAULT);
CHECK_GE(history_hid, 0) << "Error reading history from " << state_file;
int state_history_size = hdf5_get_num_links(history_hid);
CHECK_EQ(state_history_size, history_.size())
<< "Incorrect length of history blobs.";
for (int i = 0; i < history_.size(); ++i) {
ostringstream oss;
oss << i;
hdf5_load_nd_dataset<Dtype>(history_hid, oss.str().c_str(), 0,
kMaxBlobAxes, history_[i].get());
}
H5Gclose(history_hid);
H5Fclose(file_hid);
}
INSTANTIATE_CLASS(SGDSolver);
REGISTER_SOLVER_CLASS(SGD);
} // namespace caffe