-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreferences.bib
961 lines (882 loc) · 34.8 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
@article{appel2016,
author = {Appel, Orestes and Chiclana, Francisco and Carter, Jenny
and Fujita, Hamido},
year = {2016},
title = {A hybrid approach to the sentiment analysis problem at the
sentence level},
pages = {110--124},
volume = {108},
journal = {Knowledge-Based Systems}
}
@article{bahdanau2014,
author = {{Bahdanau}, Dzmitry and {Cho}, Kyunghyun and {Bengio}, Yoshua},
title = {{Neural Machine Translation by Jointly Learning to Align and Translate}},
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language, Computer Science - Machine Learning, Computer Science - Neural and Evolutionary Computing, Statistics - Machine Learning},
year = 2014,
month = sep,
eid = {arXiv:1409.0473},
pages = {arXiv:1409.0473},
archiveprefix = {arXiv},
eprint = {1409.0473},
primaryclass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2014arXiv1409.0473B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@inproceedings{baziotis2017,
author = {Baziotis, Christos and Pelekis, Nikos and Doulkeridis,
Christos},
title = {DataStories at SemEval-2017 Task 4: Deep LSTM with
Attention for Message-level and Topic-based Sentiment
Analysis},
url = {https://www.aclweb.org/anthology/S17-2126},
pages = {747--754},
publisher = {{Association for Computational Linguistics}},
booktitle = {Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017)},
year = {2017},
address = {Vancouver, Canada},
doi = {10.18653/v1/S17-2126}
}
@article{bengio1994,
author = {Bengio, Yoshua and Simard, Patrice and Frasconi, Paolo and
others},
year = {1994},
title = {Learning long-term dependencies with gradient descent is
difficult},
pages = {157--166},
volume = {5},
number = {2},
journal = {IEEE transactions on neural networks}
}
@article{bengio2003,
author = {Bengio, Yoshua and Ducharme, R{\'e}jean and Vincent,
Pascal and Jauvin, Christian},
year = {2003},
title = {A neural probabilistic language model},
pages = {1137--1155},
volume = {3},
number = {Feb},
journal = {Journal of machine learning research}
}
@article{bhuwandhingra2017,
author = {{Dhingra}, Bhuwan and {Liu}, Hanxiao and {Salakhutdinov}, Ruslan and {Cohen}, William W.},
title = {{A Comparative Study of Word Embeddings for Reading Comprehension}},
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language},
year = 2017,
month = mar,
eid = {arXiv:1703.00993},
pages = {arXiv:1703.00993},
archiveprefix = {arXiv},
eprint = {1703.00993},
primaryclass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2017arXiv170300993D},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{bojanowski2017,
author = {Bojanowski, Piotr and Grave, Edouard and Joulin, Armand
and Mikolov, Tomas},
year = {2017},
title = {Enriching Word Vectors with Subword Information},
url = {http://aclweb.org/anthology/Q17-1010},
keywords = {Word Embeddings},
pages = {135--146},
volume = {5},
journal = {Transactions of the Association for Computational
Linguistics}
}
@inproceedings{chen2017,
author = {Chen, Peng and Sun, Zhongqian and Bing, Lidong and Yang,
Wei},
title = {Recurrent attention network on memory for aspect sentiment
analysis},
keywords = {Attention;GRU;Memory Networks},
pages = {452--461},
booktitle = {Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing},
year = {2017}
}
@article{chung2014,
author = {{Chung}, Junyoung and {Gulcehre}, Caglar and {Cho}, KyungHyun and {Bengio}, Yoshua},
title = {{Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling}},
journal = {arXiv e-prints},
keywords = {Computer Science - Neural and Evolutionary Computing, Computer Science - Machine Learning},
year = 2014,
month = dec,
eid = {arXiv:1412.3555},
pages = {arXiv:1412.3555},
archiveprefix = {arXiv},
eprint = {1412.3555},
primaryclass = {cs.NE},
adsurl = {https://ui.adsabs.harvard.edu/abs/2014arXiv1412.3555C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@misc{colah-understanding-lstm,
author = {Chirstopher Olah},
month = dec,
year = 2018,
title = {Understanding LSTM Networks -- colah's blog},
url = {https://colah.github.io/posts/2015-08-Understanding-LSTMs/},
urldate = {4/15/2019}
}
@inproceedings{collobert2008,
author = {Collobert, Ronan and Weston, Jason},
title = {A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning},
url = {http://doi.acm.org/10.1145/1390156.1390177},
pages = {160--167},
publisher = {ACM},
isbn = {978-1-60558-205-4},
series = {ICML '08},
booktitle = {Proceedings of the 25th International Conference on
Machine Learning},
year = {2008},
address = {New York, NY, USA},
doi = {10.1145/1390156.1390177}
}
@article{collobert2011,
author = {Collobert, Ronan and Weston, Jason and Bottou, L{\'e}on
and Karlen, Michael and Kavukcuoglu, Koray and Kuksa,
Pavel},
year = {2011},
title = {Natural language processing (almost) from scratch},
pages = {2493--2537},
volume = {12},
number = {Aug},
journal = {Journal of machine learning research}
}
@article{deerwester1990,
author = {Deerwester, Scott and Dumais, Susan T. and Furnas, George
W. and Landauer, Thomas K. and Harshman, Richard},
year = {1990},
title = {Indexing by latent semantic analysis},
pages = {391--407},
volume = {41},
number = {6},
journal = {Journal of the American society for information science}
}
@inproceedings{dehongma2017,
author = {Dehong Ma and Sujian Li and Xiaodong Zhang and Houfeng Wang},
title = {Interactive Attention Networks for Aspect-Level Sentiment
Classification},
keywords = {Attention},
pages = {4068--4074},
booktitle = {Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17},
year = {2017},
doi = {10.24963/ijcai.2017/568}
}
@inproceedings{dong,
author = {Dong, Li and Wei, Furu and Tan, Chuanqi and Tang, Duyu and
Zhou, Ming and Xu, Ke},
title = {Adaptive Recursive Neural Network for Target-dependent
Twitter Sentiment Classification},
pages = {49--54},
publisher = {{Association for Computational Linguistics}},
editor = {Toutanova, Kristina and Wu, Hua},
booktitle = {Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers)},
year = {2014},
address = {Stroudsburg, PA, USA},
doi = {10.3115/v1/P14-2009}
}
@article{frege1892,
author = {Frege, Gottlob},
year = {1892},
title = {On sense and reference, 1892},
pages = {563--583},
journal = {Readings in the Philosophy of Language}
}
@inproceedings{gallwitz1996,
author = {Gallwitz, F. and Noth, E. and Niemann, H.},
title = {A category based approach for recognition of
out-of-vocabulary words},
keywords = {OOV Literature},
pages = {228--231},
publisher = {{Institute of Electrical and Electronics Engineers}},
isbn = {0-7803-3555-4},
editor = {Bunnell, H. Timothy. Ed and Idsardi, William},
booktitle = {ICSLP 96},
year = {1996},
address = {New York},
doi = {10.1109/ICSLP.1996.607083}
}
@inproceedings{gers2000,
author = {Gers, F. A.},
title = {Learning to forget: continual prediction with LSTM},
keywords = {LSTM},
pages = {850--855},
publisher = {IEE},
isbn = {0 85296 721 7},
series = {Conference publication / Institution of Electrical
Engineers},
booktitle = {ICANN 99, Ninth International Conference on Artificial
Neural Networks},
year = {19XX},
address = {London},
doi = {10.1049/cp:19991218}
}
@inproceedings{glorot2011,
author = {Glorot, Xavier and Bordes, Antoine and Bengio, Yoshua},
title = {Deep sparse rectifier neural networks},
pages = {315--323},
booktitle = {Proceedings of the fourteenth international conference on
artificial intelligence and statistics},
year = {2011}
}
@article{goldberg2015,
author = {{Goldberg}, Yoav},
title = {{A Primer on Neural Network Models for Natural Language Processing}},
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language},
year = 2015,
month = oct,
eid = {arXiv:1510.00726},
pages = {arXiv:1510.00726},
archiveprefix = {arXiv},
eprint = {1510.00726},
primaryclass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2015arXiv151000726G},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@book{graves2012,
year = {2012},
title = {Supervised sequence labelling with recurrent neural
networks},
price = {{\pounds}90.00},
keywords = {LSTM},
address = {Heidelberg and London},
volume = {v. 385},
publisher = {Springer},
isbn = {978-3-642-24796-5},
series = {Studies in Computational Intelligence},
editor = {Graves, Alex},
doi = {10.1007/978-3-642-24797-2}
}
@incollection{graves2012b,
author = {Graves, Alex},
title = {Supervised Sequence Labelling},
keywords = {LSTM},
pages = {5--13},
volume = {385},
publisher = {Springer},
isbn = {978-3-642-24796-5},
series = {Studies in Computational Intelligence},
editor = {Graves, Alex},
booktitle = {Supervised sequence labelling with recurrent neural
networks},
year = {2012},
address = {Heidelberg and London},
doi = {10.1007/978-3-642-24797-2{\textunderscore }2}
}
@article{hermann2015,
author = {{Hermann}, Karl Moritz and {Ko{\v{c}}isk{\'y}}, Tom{\'a}{\v{s}} and {Grefenstette}, Edward and {Espeholt}, Lasse and {Kay}, Will and {Suleyman}, Mustafa and {Blunsom}, Phil},
title = {{Teaching Machines to Read and Comprehend}},
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language, Computer Science - Artificial Intelligence, Computer Science - Neural and Evolutionary Computing},
year = 2015,
month = jun,
eid = {arXiv:1506.03340},
pages = {arXiv:1506.03340},
archiveprefix = {arXiv},
eprint = {1506.03340},
primaryclass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2015arXiv150603340H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{hochreiter1997,
author = {Hochreiter, Sepp and Schmidhuber, J{\"u}rgen},
year = {1997},
title = {Long Short-Term Memory},
keywords = {LSTM},
pages = {1735--1780},
volume = {9},
number = {8},
issn = {0899-7667},
journal = {Neural Computation},
doi = {10.1162/neco.1997.9.8.1735}
}
@inproceedings{jiang2011,
author = {Jiang, Long and Yu, Mo and Zhou, Ming and Liu, Xiaohua and
Zhao, Tiejun},
title = {Target-dependent Twitter Sentiment Classification},
url = {http://dl.acm.org/citation.cfm?id=2002472.2002492},
pages = {151--160},
publisher = {{Association for Computational Linguistics}},
isbn = {978-1-932432-87-9},
series = {HLT '11},
booktitle = {Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies
- Volume 1},
year = {2011},
address = {Stroudsburg, PA, USA}
}
@inproceedings{jiweili2015,
title = {When Are Tree Structures Necessary for Deep Learning of Representations?},
author = {Li, Jiwei and
Luong, Thang and
Jurafsky, Dan and
Hovy, Eduard},
booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing},
month = sep,
year = {2015},
address = {Lisbon, Portugal},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/D15-1278},
doi = {10.18653/v1/D15-1278},
pages = {2304--2314}
}
@inproceedings{kaishengtai2015,
title = {Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks},
author = {{K. S. Tai} and {R. Socher} and {C. D.
Manning}},
booktitle = {Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
month = jul,
year = {2015},
address = {Beijing, China},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/P15-1150},
doi = {10.3115/v1/P15-1150},
pages = {1556--1566}
}
@inproceedings{kalchbrenner2014,
title = {A Convolutional Neural Network for Modelling Sentences},
author = {{N. Kalchbrenner} and {E. Grefenstette} and {P.
Blunsom}},
booktitle = {Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
month = jun,
year = {2014},
address = {Baltimore, Maryland},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/P14-1062},
doi = {10.3115/v1/P14-1062},
pages = {655--665}
}
@inproceedings{kelvinxu2015,
author = {Xu, Kelvin and Ba, Jimmy Lei and Kiros, Ryan and Cho, Kyunghyun and Courville, Aaron and Salakhutdinov, Ruslan and Zemel, Richard S. and Bengio, Yoshua},
title = {Show, Attend and Tell: Neural Image Caption Generation with Visual Attention},
year = {2015},
publisher = {JMLR.org},
booktitle = {Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37},
pages = {2048–2057},
numpages = {10},
location = {Lille, France},
series = {ICML'15}
}
@article{kharde2016,
author = {{Kharde}, Vishal. A. and {Sonawane}, Sheetal., Prof.},
title = {{Sentiment Analysis of Twitter Data: A Survey of Techniques}},
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language, I.2.7},
year = 2016,
month = jan,
eid = {arXiv:1601.06971},
pages = {arXiv:1601.06971},
archiveprefix = {arXiv},
eprint = {1601.06971},
primaryclass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2016arXiv160106971K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@inproceedings{kiritchenko,
author = {Kiritchenko, Svetlana and Zhu, Xiaodan and Cherry, Colin
and Mohammad, Saif},
title = {NRC-Canada-2014: Detecting Aspects and Sentiment in
Customer Reviews},
pages = {437--442},
publisher = {{Association for Computational Linguistics}},
editor = {Nakov, Preslav and Zesch, Torsten},
booktitle = {Proceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014)},
year = {2014},
address = {Stroudsburg, PA, USA},
doi = {10.3115/v1/S14-2076}
}
@inproceedings{lakkaraju2014,
author = {Lakkaraju, Himabindu and Socher, Richard and Manning,
Chris},
title = {Aspect specific sentiment analysis using hierarchical deep
learning},
booktitle = {NIPS Workshop on deep learning and representation
learning},
year = {2014}
}
@incollection{lecun1998,
author = {LeCun, Yann A. and Bottou, L{\'e}on and Orr, Genevieve B.
and M{\"u}ller, Klaus-Robert},
title = {Efficient BackProp},
pages = {9--48},
volume = {7700},
publisher = {Springer},
isbn = {978-3-642-35288-1},
series = {LNCS sublibrary. SL 1, Theoretical computer science and
general issues},
editor = {Montavon, Gr{\'e}goire and Orr, Genevieve and M{\"u}ller,
Klaus-Robert},
booktitle = {Neural networks},
year = {2012},
address = {Heidelberg},
doi = {10.1007/978-3-642-35289-8{\textunderscore }3}
}
@article{liu2012,
author = {Liu, Bing},
year = {2012},
title = {Sentiment analysis and opinion mining},
pages = {1--167},
volume = {5},
number = {1},
journal = {Synthesis lectures on human language technologies}
}
@inproceedings{ma2018,
author = {Ma, Yukun and Peng, Haiyun and Cambria, Erik},
title = {Targeted aspect-based sentiment analysis via embedding
commonsense knowledge into an attentive LSTM},
url = {https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16541/16152},
pages = {5876--5883},
booktitle = {Proceedings of AAAI},
year = {2018}
}
@article{manning2010,
author = {Manning, Christopher and Raghavan, Prabhakar and
Sch{\"u}tze, Hinrich},
year = {2010},
title = {Introduction to information retrieval},
pages = {100--103},
volume = {16},
number = {1},
journal = {Natural Language Engineering}
}
@inproceedings{mikolov2013,
author = {Mikolov, Tomas and Sutskever, Ilya and Chen, Kai and
Corrado, Greg and Dean, Jeffrey},
title = {Distributed Representations of Words and Phrases and Their
Compositionality},
url = {http://dl.acm.org/citation.cfm?id=2999792.2999959},
keywords = {Word Embeddings},
pages = {3111--3119},
publisher = {{Curran Associates Inc}},
series = {NIPS'13},
booktitle = {Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2},
year = {2013},
address = {USA}
}
@article{mikolov2013b,
author = {{Mikolov}, Tomas and {Chen}, Kai and {Corrado}, Greg and {Dean}, Jeffrey},
title = {{Efficient Estimation of Word Representations in Vector Space}},
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language},
year = 2013,
month = jan,
eid = {arXiv:1301.3781},
pages = {arXiv:1301.3781},
archiveprefix = {arXiv},
eprint = {1301.3781},
primaryclass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2013arXiv1301.3781M},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@inproceedings{mikolov2013c,
author = {Mikolov, Tomas and Yih, Wen-tau and Zweig, Geoffrey},
title = {Linguistic regularities in continuous space word
representations},
pages = {746--751},
booktitle = {Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies},
year = {2013}
}
@inproceedings{moore2018,
title = {Bringing replication and reproduction together with generalisability in {NLP}: Three reproduction studies for Target Dependent Sentiment Analysis},
author = {Moore, Andrew and
Rayson, Paul},
booktitle = {Proceedings of the 27th International Conference on Computational Linguistics},
month = aug,
year = {2018},
address = {Santa Fe, New Mexico, USA},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/C18-1097},
pages = {1132--1144}
}
@inproceedings{nakov2016,
author = {Nakov, Preslav and Ritter, Alan and Rosenthal, Sara and
Sebastiani, Fabrizio and Stoyanov, Veselin},
title = {SemEval-2016 task 4: Sentiment analysis in Twitter},
pages = {1--18},
booktitle = {Proceedings of the 10th international workshop on semantic
evaluation (semeval-2016)},
year = {2016}
}
@article{naptali2012,
author = {Naptali, Welly and Tsuchiya, Masatoshi and Nakagawa,
Seiichi},
year = {2012},
title = {Class-Based N-Gram Language Model for New Words Using
Out-of-Vocabulary to In-Vocabulary Similarity},
keywords = {OOV Literature},
pages = {2308--2317},
volume = {E95.D},
number = {9},
issn = {0916-8532},
journal = {IEICE Transactions on Information and Systems},
doi = {10.1587/transinf.E95.D.2308}
}
@inproceedings{nguyen2015,
author = {Nguyen, Thien Hai and Shirai, Kiyoaki},
title = {Phrasernn: Phrase recursive neural network for
aspect-based sentiment analysis},
pages = {2509--2514},
booktitle = {Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing},
year = {2015}
}
@inproceedings{pang2002,
author = {Pang, Bo and Lee, Lillian and Vaithyanathan, Shivakumar},
title = {Thumbs Up?: Sentiment Classification Using Machine
Learning Techniques},
url = {https://doi.org/10.3115/1118693.1118704},
pages = {79--86},
publisher = {{Association for Computational Linguistics}},
series = {EMNLP '02},
booktitle = {Proceedings of the ACL-02 Conference on Empirical Methods
in Natural Language Processing - Volume 10},
year = {2002},
address = {Stroudsburg, PA, USA},
doi = {10.3115/1118693.1118704}
}
@article{pang2008,
author = {Pang, Bo and Lee, Lillian and others},
year = {2008},
title = {Opinion mining and sentiment analysis},
pages = {1--135},
volume = {2},
number = {1--2},
journal = {Foundations and Trends$\backslash$textregistered in
Information Retrieval}
}
@inproceedings{pennington,
author = {Pennington, Jeffrey and Socher, Richard and Manning,
Christopher},
title = {Glove: Global Vectors for Word Representation},
keywords = {Word Embeddings},
pages = {1532--1543},
publisher = {{Association for Computational Linguistics}},
editor = {{Alessandro Moschitti}, Qatar Computing Research Institute
and {Bo Pang}, Google and {Walter Daelemans}, University of
Antwerp},
booktitle = {Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP)},
year = {2014},
address = {Stroudsburg, PA, USA},
doi = {10.3115/v1/D14-1162}
}
@inproceedings{pontiki,
author = {Pontiki, Maria and Galanis, Dimitris and Pavlopoulos, John
and Papageorgiou, Harris and Androutsopoulos, Ion and
Manandhar, Suresh},
title = {SemEval-2014 Task 4: Aspect Based Sentiment Analysis},
pages = {27--35},
publisher = {{Association for Computational Linguistics}},
editor = {Nakov, Preslav and Zesch, Torsten},
booktitle = {Proceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014)},
year = {2014},
address = {Stroudsburg, PA, USA},
doi = {10.3115/v1/S14-2004}
}
@inproceedings{reimers2017,
title = {Reporting Score Distributions Makes a Difference: Performance Study of {LSTM}-networks for Sequence Tagging},
author = {Nil Reimers and Iryna Gurevych},
booktitle = {Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing},
month = sep,
year = {2017},
address = {Copenhagen, Denmark},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/D17-1035},
doi = {10.18653/v1/D17-1035},
pages = {338--348},
abstract = {In this paper we show that reporting a single performance score is insufficient to compare non-deterministic approaches. We demonstrate for common sequence tagging tasks that the seed value for the random number generator can result in statistically significant ($p < 10^{-4}$) differences for state-of-the-art systems. For two recent systems for NER, we observe an absolute difference of one percentage point Fâ‚-score depending on the selected seed value, making these systems perceived either as state-of-the-art or mediocre. Instead of publishing and reporting single performance scores, we propose to compare score distributions based on multiple executions. Based on the evaluation of 50.000 LSTM-networks for five sequence tagging tasks, we present network architectures that produce both superior performance as well as are more stable with respect to the remaining hyperparameters.}
}
@inproceedings{rosenthal2015,
author = {Rosenthal, Sara and Nakov, Preslav and Kiritchenko,
Svetlana and Mohammad, Saif and Ritter, Alan and Stoyanov,
Veselin},
title = {Semeval-2015 task 10: Sentiment analysis in twitter},
pages = {451--463},
booktitle = {Proceedings of the 9th international workshop on semantic
evaluation (SemEval 2015)},
year = {2015}
}
@article{rumelhart1988,
author = {Rumelhart, David E. and Hinton, Geoffrey E. and Williams,
Ronald J. and others},
year = {1988},
title = {Learning representations by back-propagating errors},
pages = {1},
volume = {5},
number = {3},
journal = {Cognitive modeling}
}
@inproceedings{saeidi2016,
author = {Saeidi, Marzieh and Bouchard, Guillaume and Liakata, Maria
and Riedel, Sebastian},
title = {SentiHood: Targeted Aspect Based Sentiment Analysis
Dataset for Urban Neighbourhoods},
url = {http://www.aclweb.org/anthology/C16-1146},
pages = {1546--1556},
publisher = {{The COLING 2016 Organizing Committee}},
booktitle = {Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers},
year = {2016}
}
@inproceedings{socher2011,
author = {Socher, Richard and Pennington, Jeffrey and Huang, Eric H.
and Ng, Andrew Y. and Manning, Christopher D.},
title = {Semi-supervised Recursive Autoencoders for Predicting
Sentiment Distributions},
url = {http://dl.acm.org/citation.cfm?id=2145432.2145450},
pages = {151--161},
publisher = {{Association for Computational Linguistics}},
isbn = {978-1-937284-11-4},
series = {EMNLP '11},
booktitle = {Proceedings of the Conference on Empirical Methods in
Natural Language Processing},
year = {2011},
address = {Stroudsburg, PA, USA}
}
@inproceedings{socher2013,
author = {Socher, Richard and Perelygin, Alex and Wu, Jean and
Chuang, Jason and Manning, Christopher D. and Ng, Andrew
and Potts, Christopher},
title = {Recursive Deep Models for Semantic Compositionality Over a
Sentiment Treebank},
url = {http://www.aclweb.org/anthology/D13-1170},
pages = {1631--1642},
publisher = {{Association for Computational Linguistics}},
booktitle = {Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing},
year = {2013}
}
@article{srivastava2014,
author = {Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky,
Alex and Sutskever, Ilya and Salakhutdinov, Ruslan},
year = {2014},
title = {Dropout: A Simple Way to Prevent Neural Networks from
Overfitting},
url = {http://dl.acm.org/citation.cfm?id=2627435.2670313},
pages = {1929--1958},
volume = {15},
number = {1},
issn = {1532-4435},
journal = {J. Mach. Learn. Res.}
}
@inproceedings{tang,
author = {Tang, Duyu and Wei, Furu and Yang, Nan and Zhou, Ming and
Liu, Ting and Qin, Bing},
title = {Learning Sentiment-Specific Word Embedding for Twitter
Sentiment Classification},
pages = {1555--1565},
publisher = {{Association for Computational Linguistics}},
editor = {Toutanova, Kristina and Wu, Hua},
booktitle = {Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers)},
year = {2014},
address = {Stroudsburg, PA, USA},
doi = {10.3115/v1/P14-1146}
}
@inproceedings{tang2016,
author = {Tang, Duyu and Qin, Bing and Liu, Ting},
title = {Aspect Level Sentiment Classification with Deep Memory
Network},
keywords = {Memory Networks},
pages = {214--224},
publisher = {{Association for Computational Linguistics}},
editor = {Su, Jian and Duh, Kevin and Carreras, Xavier},
booktitle = {Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing},
year = {2016},
address = {Stroudsburg, PA, USA},
doi = {10.18653/v1/D16-1021}
}
@inproceedings{tang2016b,
author = {Tang, Duyu and Qin, Bing and Feng, Xiaocheng and Liu,
Ting},
title = {Effective LSTMs for Target-Dependent Sentiment
Classification},
url = {http://www.aclweb.org/anthology/C16-1311},
pages = {3298--3307},
publisher = {{The COLING 2016 Organizing Committee}},
booktitle = {Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers},
year = {2016}
}
@inproceedings{tay2017,
author = {Tay, Yi and Tuan, Luu Anh and Hui, Siu Cheung},
title = {Dyadic Memory Networks for Aspect-based Sentiment
Analysis},
keywords = {Memory Networks},
pages = {107--116},
publisher = {ACM},
isbn = {9781450349185},
editor = {Lim, Ee-Peng},
booktitle = {Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management},
year = {2017},
address = {New York, NY},
doi = {10.1145/3132847.3132936}
}
@inproceedings{vo2015,
author = {Vo, Duy-Tin and Zhang, Yue},
title = {Target-dependent Twitter Sentiment Classification with
Rich Automatic Features},
url = {http://dl.acm.org/citation.cfm?id=2832415.2832437},
pages = {1347--1353},
publisher = {{AAAI Press}},
isbn = {978-1-57735-738-4},
series = {IJCAI'15},
booktitle = {Proceedings of the 24th International Conference on
Artificial Intelligence},
year = {2015}
}
@inproceedings{wagner2014,
author = {Wagner, Joachim and Arora, Piyush and Cortes, Santiago and
Barman, Utsab and Bogdanova, Dasha and Foster, Jennifer and
Tounsi, Lamia},
title = {Dcu: Aspect-based polarity classification for semeval task
4},
pages = {223--229},
booktitle = {Proceedings of the 8th international workshop on semantic
evaluation (SemEval 2014)},
year = {2014}
}
@inproceedings{wang,
author = {Wang, Yequan and Huang, Minlie and zhu, xiaoyan and Zhao,
Li},
title = {Attention-based LSTM for Aspect-level Sentiment
Classification},
keywords = {Attention},
pages = {606--615},
publisher = {{Association for Computational Linguistics}},
editor = {Su, Jian and Duh, Kevin and Carreras, Xavier},
booktitle = {Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing},
year = {2016},
address = {Stroudsburg, PA, USA},
doi = {10.18653/v1/D16-1058}
}
@inproceedings{wang2017,
author = {Wang, Bo and Liakata, Maria and Zubiaga, Arkaitz and
Procter, Rob},
title = {TDParse: Multi-target-specific sentiment recognition on
Twitter},
url = {http://aclweb.org/anthology/E17-1046},
pages = {483--493},
publisher = {{Association for Computational Linguistics}},
booktitle = {Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 1,
Long Papers},
year = {2017}
}
@article{wang2018,
author = {Wang, Shuai and Mazumder, Sahisnu and Liu, Bing and Zhou,
Mianwei and Chang, Yi},
year = {2018},
title = {Target-Sensitive Memory Networks for Aspect Sentiment
Classification},
url = {http://www.aclweb.org/anthology/P18-1088},
keywords = {Memory Networks},
pages = {957--967},
volume = {1},
journal = {Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers)}
}
@inproceedings{xue2018,
title = {Aspect Based Sentiment Analysis with Gated Convolutional Networks},
author = {Xue, Wei and
Li, Tao},
booktitle = {Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
month = jul,
year = {2018},
address = {Melbourne, Australia},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/P18-1234},
doi = {10.18653/v1/P18-1234},
pages = {2514--2523}
}
@article{young2017,
author = {{Young}, Tom and {Hazarika}, Devamanyu and {Poria}, Soujanya and {Cambria}, Erik},
title = {{Recent Trends in Deep Learning Based Natural Language Processing}},
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language},
year = 2017,
month = aug,
eid = {arXiv:1708.02709},
pages = {arXiv:1708.02709},
archiveprefix = {arXiv},
eprint = {1708.02709},
primaryclass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2017arXiv170802709Y},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@inproceedings{zhang2016,
author = {Zhang, Meishan and Zhang, Yue and Vo, Duy-Tin},
title = {Gated Neural Networks for Targeted Sentiment Analysis},
url = {http://dl.acm.org/citation.cfm?id=3016100.3016334},
pages = {3087--3093},
publisher = {{AAAI Press}},
series = {AAAI'16},
booktitle = {Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence},
year = {2016}
}
@article{zhang2018,
author = {Zhang, Lei and Wang, Shuai and Liu, Bing},
year = {2018},
title = {Deep learning for sentiment analysis: A survey},
pages = {e1253},
volume = {8},
number = {4},
issn = {1942-4787},
journal = {Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery},
doi = {10.1002/widm.1253}
}
@article{zheng2018,
author = {{Zheng}, Shiliang and {Xia}, Rui},
title = {{Left-Center-Right Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention}},
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language},
year = 2018,
month = feb,
eid = {arXiv:1802.00892},
pages = {arXiv:1802.00892},
archiveprefix = {arXiv},
eprint = {1802.00892},
primaryclass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2018arXiv180200892Z},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@inproceedings{zhu2015,
author = {Zhu, Xiaodan and Sobihani, Parinaz and Guo, Hongyu},
title = {Long short-term memory over recursive structures},
keywords = {Tree Structured LSTM},
pages = {1604--1612},
booktitle = {International Conference on Machine Learning},
year = {2015}
}
@article{navonil2020,
author = {{Majumder}, Navonil and {Bhardwaj}, Rishabh and {Poria}, Soujanya and {Zadeh}, Amir and {Gelbukh}, Alexander and {Hussain}, Amir and {Morency}, Louis-Philippe},
title = {{Improving Aspect-Level Sentiment Analysis with Aspect Extraction}},
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language},
year = 2020,
month = may,
eid = {arXiv:2005.06607},
pages = {arXiv:2005.06607},
archiveprefix = {arXiv},
eprint = {2005.06607},
primaryclass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2020arXiv200506607M},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}