-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathD_SpeechToBeta.py
275 lines (214 loc) · 10.1 KB
/
D_SpeechToBeta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#音声→betaとなるように学習
#STB_settings.py パラメータ類
#data.py 音声を256サンプル毎に分割・cleanとnoisyを統合・pklファイルで保存
#data_beta.py betaが入ったcsvファイルを読み込み・cleanとnoisyを統合・大きい値を補正・pklファイルで保存(事前に実行)
from __future__ import absolute_import
from six.moves import range
import os
import numpy as np
import nnabla as nn
import nnabla.functions as F
import nnabla.parametric_functions as PF
import nnabla.solvers as S
import nnabla.initializer as I
from nnabla.ext_utils import get_extension_context
import joblib
import csv
# Figure 関連
import matplotlib.pyplot as plt
from D_STB_settings import parameters
import D_data as dt
# -------------------------------------------
# Discriminator
# -------------------------------------------
def Discriminator(speech):
"""
Building discriminator network
Noisy : (Batch, 1, 256)
Clean : (Batch, 1, 256)
Output : (Batch, 1, 256)
"""
## Sub-functions
## ---------------------------------
# Convolution + Batch Normalization
def n_conv(x, output_ch, karnel=(31,), pad=(15,), stride=(2,), name=None):
# return PF.batch_normalization(
# PF.convolution(x, output_ch, karnel, pad=pad, stride=stride, name=name),
# batch_stat=not test,
# name=name)
return PF.convolution(x, output_ch, karnel, pad=pad, stride=stride, name=name)
# Activation Function
def af(x):
return F.leaky_relu(x)
## Main Processing
## ---------------------------------
#Input = F.concatenate(Noisy, Clean, axis=1)
# Dis : Discriminator
with nn.parameter_scope("stb"):
dis1 = af(n_conv(speech, 8, name="dis1")) # Input:(2, 16384) --> (16, 16384)
dis2 = af(n_conv(dis1, 16, name="dis2")) # (16, 16384) --> (32, 8192)
dis3 = af(n_conv(dis2, 16, name="dis3")) # (32, 8192) --> (32, 4096)
dis4 = af(n_conv(dis3, 32, name="dis4")) # (32, 4096) --> (64, 2048)
dis5 = af(n_conv(dis4, 32, name="dis5")) # (64, 2048) --> (64, 1024)
dis6 = af(n_conv(dis5, 64, name="dis6")) # (64, 1024) --> (128, 512)
dis7 = n_conv(dis6, 128, name="dis7") # (512, 32) --> (1024, 16)
f = PF.affine(dis7,1) # (1024, 16) --> (1,)
#f=F.tanh(dis7)
return f
# -------------------------------------------
# Loss funcion (sub functions)
# -------------------------------------------
def SquaredError_Scalor(x, val=1):
return F.squared_error(x, F.constant(val, x.shape))
# -------------------------------------------
# Loss funcion
# -------------------------------------------
def Loss_stb(dval_real, dval_fake):
E_real = F.mean(SquaredError_Scalor(dval_real, val=1)) # real
E_fake = F.mean(SquaredError_Scalor(dval_fake, val=0)) # fake
return E_real + E_fake
# -------------------------------------------
# Train processing
# -------------------------------------------
def train(args):
# *****************************************************
# Settings
# *****************************************************
## Declarate Network
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# - Step 1. Define Variables
# * noisy : container of batch of input values
# * clean : container of batch of true values
# - Step 2. Define Network
# * aeout : output of Network using "Autoencoder"
# * loss_dae : loss function
# - Step 3. Define Solver
# * solver_dae : Adam function
# - Step 4. Define Solver
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Variables
speech = nn.Variable([args.batch_size, 1, 256]) # Input
beta = nn.Variable([args.batch_size, 1]) # Desire
# Network (DAE)
stbout = Discriminator(speech) # Predicted Clean
loss_stb = F.mean(F.squared_error(stbout, beta)) # Loss function
## Declarate Solver
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# - Step 1. Define Solver
# * solver_dae : Adam solver (the argument is learning rate)
# - Step 2. Set parameters to update
# * nn.get_parameters() : parameters in scope "dae"
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Solver
solver_stb = S.Adam(args.learning_rate) # Adam
# Set parameter
with nn.parameter_scope("stb"):
solver_stb.set_parameters(nn.get_parameters())
## Load data & Create batch
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# - Step 1. Load all learning data using "data_loader"
# * clean_data : clean wave data for learning
# * noisy_data : noisy wave data for learning
# - Step 2. Divide data into batch segment
# * create_batch() makes batches including the set of (clean, noisy) from clean/noisy wave data.
# - Step 3. Delete all data by "del"
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
speech_data ,beta_data = dt.data_loader() # loading all data as nunpy array
baches = dt.create_batch(speech_data,beta_data, args.batch_size) # creating batch from data
del speech_data,beta_data
## Reconstruct parameters
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# If "retrain" is true,
# - load trained parameters from "DAE_param_%06d.h5"
# Otherwise
# - do nothing
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if args.retrain:
# Reconstruct parameters
print(' Retrain parameter from past-trained network')
with nn.parameter_scope("stb"):
nn.load_parameters(os.path.join(args.model_save_path, "STB_param_%06d.h5" % args.pre_epoch))
start_batch_num = args.pre_epoch # batch num to start
else:
start_batch_num = 0 # batch num to start
# *****************************************************
# Training
# *****************************************************
print('== Start Training ==')
for i in range(start_batch_num, args.epoch):
print('--------------------------------')
print(' Epoch :: %d/%d' % (i + 1, args.epoch))
print('--------------------------------')
# Batch iteration
for j in range(baches.batch_num):
print(' Train (Epoch.%d) - %d/%d' % (i+1, j+1, baches.batch_num))
# Set input data
speech.d,beta.d = baches.next(j) # Set input data
# Updating
solver_stb.zero_grad() # Clear the back-propagation result
loss_stb.forward(clear_no_need_grad=True) # Run the network
loss_stb.backward(8, clear_buffer=True) # Calculate the back-propagation result
solver_stb.scale_grad(1/8.)
solver_stb.weight_decay(args.weight_decay*8) # Set weight-decay parameter
solver_stb.update() # Update
# Display
if (j+1) % 50 == 0:
# Display
stbout.forward(clear_buffer =True)
print(' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
print(' Epoch #%d, %d/%d Loss ::' % (i + 1, j + 1, baches.batch_num))
print(' Reconstruction Error = %.4f' % loss_stb.d)
print(' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
# Save parameters in scope "dae" for each batch
with nn.parameter_scope("stb"):
nn.save_parameters(os.path.join(args.model_save_path, "STB_param_%06d.h5" % (i + 1)))
# *****************************************************
# Save
# *****************************************************
## Save parameters in scope "dae"
with nn.parameter_scope("stb"):
nn.save_parameters(os.path.join(args.model_save_path, "STB_param_%06d.h5" % args.epoch))
def test(args):
## Load parameters
with nn.parameter_scope("stb"):
nn.load_parameters(os.path.join(args.model_save_path, "STB_param_%06d.h5" % args.epoch))
## Load data & Create batch
speech_data, beta_data = dt.data_loader() # loading all data as nunpy array
baches_test = dt.create_batch_test(speech_data, beta_data, args.batch_size) # creating batch from data
del speech_data, beta_data
# Variables
speech_t = nn.Variable([args.batch_size, 1, 256]) # Input
# Network (DAE)
output_t = Discriminator(speech_t) # Predicted Clean
print('== Start Test ==')
# Batch iteration
for j in range(baches_test.batch_num):
print(' Test - %d/%d' % ( j + 1, baches_test.batch_num))
# Set input data
speech_t.d, _ = baches_test.next(j) # Set input data
#speech_t.d=baches_test.speech
output_t.forward()
# *****************************************************
# Save as pklfile
# *****************************************************
output = output_t.d.T # これだと横に出力される
with open(args.result_path + '/beta_result.pkl', 'wb') as f:
joblib.dump(output, f, protocol=-1, compress=3)
if __name__ == '__main__':
# GPU connection
ctx = get_extension_context('cudnn', device_id=0, type_config='half')
nn.set_default_context(ctx)
# Load parameters
args = parameters()
# Training
# 1. Pre-train for only generator
# -- if "pretrain"
# - if "retrain" -> load trained-generator & restart pre-train
# - else -> initialize generator & start pre-train
# -- else -> nothing
# 2. Train
# -- if "retrain" -> load trianed-generator and trained-discriminator & restart train
# -- else -> start train (* normal case)
train(args)
# Test
#test(args)