-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_feature_matrix.py
101 lines (85 loc) · 3.5 KB
/
get_feature_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 27 05:06:25 2020
@author: Shaurya-PC
"""
import librosa
import numpy as np
import pandas as pd
from os import listdir
from os.path import isfile, join
import soundfile as sf
import pyloudnorm as pyln
def extract_feature(file):
id = 1 # Song ID
feature_set = {'ID':[],
'SONG_NAME':[],
'rmse':[],
'zcr':[],
'mfcc':[],
'mfcc_delta': [],
'loudness':[],
'tempo': [],
'chroma_stft_mean': [],
'chroma_cq_mean':[],
'beats':[],
'chroma_cens_mean': [],
'mel_mean': [],
'cent_mean': [],
'spec_bw_mean': [],
'contrast_mean': [],
'rolloff_mean':[],
'poly_features': [],
'tonnetz': [],
'harm_mean': [],
'perc_mean' : [],
}
songname = file
y, sr = librosa.load(songname, duration=60)
S = np.abs(librosa.stft(y))
# Extracting Features
rmse = librosa.feature.rms(y=y)
zcr = librosa.feature.zero_crossing_rate(y)
mfcc = librosa.feature.mfcc(y=y, sr=sr)
mfcc_delta = librosa.feature.delta(mfcc)
tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr)
chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr)
melspectrogram = librosa.feature.melspectrogram(y=y, sr=sr)
cent = librosa.feature.spectral_centroid(y=y, sr=sr)
spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
poly_features = librosa.feature.poly_features(S=S, sr=sr)
tonnetz = librosa.feature.tonnetz(y=y, sr=sr)
harmonic = librosa.effects.harmonic(y)
percussive = librosa.effects.percussive(y)
#Calculate Loudness
data, rate = sf.read(songname)
meter = pyln.Meter(rate) #
loudness = meter.integrated_loudness(data)
# Transforming Features
feature_set['ID'].append(id)
feature_set['SONG_NAME'].append(songname)
feature_set['rmse'].append(np.mean(rmse))
feature_set['mfcc'].append(np.mean(mfcc))
feature_set['mfcc_delta'].append(np.mean(mfcc_delta))
feature_set['zcr'].append(np.mean(zcr))
feature_set['loudness'].append(loudness)
feature_set['tempo'].append(tempo)
feature_set['beats'].append(sum(beats))
feature_set['chroma_stft_mean'].append(np.mean(chroma_stft))
feature_set['chroma_cq_mean'].append(np.mean(chroma_cq))
feature_set['chroma_cens_mean'].append(np.mean(chroma_cens))
feature_set['mel_mean'].append(np.mean(melspectrogram))
feature_set['cent_mean'].append(np.mean(cent))
feature_set['spec_bw_mean'].append(np.mean(spec_bw))
feature_set['contrast_mean'].append(np.mean(contrast))
feature_set['rolloff_mean'].append(np.mean(rolloff))
feature_set['poly_features'].append(np.mean(poly_features))
feature_set['tonnetz'].append(np.mean(tonnetz))
feature_set['harm_mean'].append(np.mean(harmonic))
feature_set['perc_mean'].append(np.mean(percussive))
print(songname)
return pd.DataFrame(feature_set)