Skip to content

Commit 6d09009

Browse files
committed
Document Sync by Tina
1 parent 9b87e1f commit 6d09009

File tree

2 files changed

+15
-19
lines changed

2 files changed

+15
-19
lines changed

docs/stable/getting_started/docker_quickstart.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -4,15 +4,15 @@ sidebar_position: 2
44

55
# Docker Quickstart Guide
66

7-
This guide shows how to quickly set up a local ServerlessLLM cluster using Docker Compose. We will start a cluster with a head node and two worker nodes, deploy and query a model using the `sllm-cli`.
7+
This guide shows how to quickly set up a local ServerlessLLM cluster using Docker Compose. We will start a minimal cluster with a head node and one worker node, deploy and query a model using the `sllm-cli`.
88

99
## Pre-requisites
1010

1111
Before you begin, make sure you have the following:
1212

1313
1. **Docker**: Installed on your system. You can download it from [here](https://docs.docker.com/get-docker/).
1414
2. **ServerlessLLM CLI**: Installed on your system. You can install it using `pip install serverless-llm`.
15-
1. **GPUs**: At least 2 NVIDIA GPUs are necessary. If you have more GPUs, you can adjust the `docker-compose.yml` file accordingly.
15+
1. **GPUs**: At least one NVIDIA GPU is necessary. If you have more GPUs, you can adjust the `docker-compose.yml` file accordingly.
1616
2. **NVIDIA Docker Toolkit**: This allows Docker to use NVIDIA GPUs. Follow the installation guide [here](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html).
1717

1818
## Run ServerlessLLM using Docker Compose

docs/stable/getting_started/quickstart.md

+13-17
Original file line numberDiff line numberDiff line change
@@ -19,30 +19,32 @@ ray start --head --port=6379 --num-cpus=4 --num-gpus=0 \
1919
In a new terminal, start the worker node:
2020
```bash
2121
conda activate sllm-worker
22-
ray start --address=0.0.0.0:6379 --num-cpus=4 --num-gpus=2 \
22+
export CUDA_VISIBLE_DEVICES=0
23+
ray start --address=0.0.0.0:6379 --num-cpus=4 --num-gpus=1 \
2324
--resources='{"worker_node": 1, "worker_id_0": 1}' --block
2425
```
2526

2627
And start ServerlessLLM Store server. This server will use `./models` as the storage path by default.
2728

2829
```bash
2930
conda activate sllm-worker
31+
export CUDA_VISIBLE_DEVICES=0
3032
sllm-store-server
3133
```
3234

3335
Expected output:
3436
```bash
3537
$ sllm-store-server
36-
TODO Run server...
38+
Run server...
3739
WARNING: Logging before InitGoogleLogging() is written to STDERR
38-
I20240720 08:40:59.634253 141776 server.cpp:307] Log directory already exists.
39-
I20240720 08:40:59.671192 141776 checkpoint_store.cpp:46] Number of GPUs: 2
40-
I20240720 08:40:59.671768 141776 checkpoint_store.cpp:48] I/O threads: 4, chunk size: 32MB
41-
I20240720 08:40:59.797175 141776 checkpoint_store.cpp:69] GPU 0 UUID: cef23f2a-71f7-44f3-8246-5ebd870755e7
42-
I20240720 08:40:59.951408 141776 checkpoint_store.cpp:69] GPU 1 UUID: bbd10d20-aed8-4324-8b2e-7b6e54aaca0e
43-
I20240720 08:41:00.759124 141776 pinned_memory_pool.cpp:29] Creating PinnedMemoryPool with 1024 buffers of 33554432 bytes
44-
I20240720 08:41:24.315564 141776 checkpoint_store.cpp:80] Memory pool created with 32GB
45-
I20240720 08:41:24.318261 141776 server.cpp:279] Server listening on 0.0.0.0:8073
40+
I20241111 16:34:14.856642 467195 server.cpp:333] Log directory already exists.
41+
I20241111 16:34:14.897728 467195 checkpoint_store.cpp:41] Number of GPUs: 1
42+
I20241111 16:34:14.897949 467195 checkpoint_store.cpp:43] I/O threads: 4, chunk size: 32MB
43+
I20241111 16:34:14.897960 467195 checkpoint_store.cpp:45] Storage path: "./models/"
44+
I20241111 16:34:14.972811 467195 checkpoint_store.cpp:71] GPU 0 UUID: c9938b31-33b0-e02f-24c5-88bd6fbe19ad
45+
I20241111 16:34:14.972856 467195 pinned_memory_pool.cpp:29] Creating PinnedMemoryPool with 128 buffers of 33554432 bytes
46+
I20241111 16:34:16.449775 467195 checkpoint_store.cpp:83] Memory pool created with 4GB
47+
I20241111 16:34:16.462957 467195 server.cpp:306] Server listening on 0.0.0.0:8073
4648
```
4749

4850
Now, let’s start ServerlessLLM.
@@ -88,10 +90,4 @@ To delete a deployed model, use the following command:
8890
sllm-cli delete facebook/opt-1.3b
8991
```
9092

91-
This will remove the specified model from the ServerlessLLM server.
92-
93-
You can also remove several models at once by providing multiple model names separated by spaces:
94-
95-
```bash
96-
sllm-cli delete facebook/opt-1.3b facebook/opt-2.7b
97-
```
93+
This will remove the specified model from the ServerlessLLM server.

0 commit comments

Comments
 (0)