-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdatasets.py
179 lines (153 loc) · 6.48 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import json
import random
import numpy as np
from PIL import ImageDraw
from torchvision import datasets, transforms
from torchvision.datasets.folder import ImageFolder, default_loader
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, \
IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data import create_transform
from timm.data.transforms import str_to_interp_mode
from imagenet_dataset import ImageNetDataset
class INatDataset(ImageFolder):
def __init__(self, root, train=True, year=2018, transform=None, target_transform=None,
category='name', loader=default_loader):
self.transform = transform
self.loader = loader
self.target_transform = target_transform
self.year = year
# assert category in ['kingdom','phylum','class','order','supercategory','family','genus','name']
path_json = os.path.join(root, f'{"train" if train else "val"}{year}.json')
with open(path_json) as json_file:
data = json.load(json_file)
with open(os.path.join(root, 'categories.json')) as json_file:
data_catg = json.load(json_file)
path_json_for_targeter = os.path.join(root, f"train{year}.json")
with open(path_json_for_targeter) as json_file:
data_for_targeter = json.load(json_file)
targeter = {}
indexer = 0
for elem in data_for_targeter['annotations']:
king = []
king.append(data_catg[int(elem['category_id'])][category])
if king[0] not in targeter.keys():
targeter[king[0]] = indexer
indexer += 1
self.nb_classes = len(targeter)
self.samples = []
for elem in data['images']:
cut = elem['file_name'].split('/')
target_current = int(cut[2])
path_current = os.path.join(root, cut[0], cut[2], cut[3])
categors = data_catg[target_current]
target_current_true = targeter[categors[category]]
self.samples.append((path_current, target_current_true))
# __getitem__ and __len__ inherited from ImageFolder
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform)
nb_classes = 100
elif args.data_set == 'IMNET':
# root = os.path.join(args.data_path, 'train' if is_train else 'val')
# dataset = datasets.ImageFolder(root, transform=transform)
if is_train:
dataset = ImageNetDataset(
root_dir=args.root_dir_train,
meta_file=args.meta_file_train,
transform=transform,
)
else:
dataset = ImageNetDataset(
root_dir=args.root_dir_val,
meta_file=args.meta_file_val,
transform=transform,
)
nb_classes = 1000
elif args.data_set == 'INAT':
dataset = INatDataset(args.data_path, train=is_train, year=2018,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
elif args.data_set == 'INAT19':
dataset = INatDataset(args.data_path, train=is_train, year=2019,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
return dataset, nb_classes
def build_transform(is_train, args):
resize_im = args.input_size > 32
scale = getattr(args, 'scale', None)
imagenet_default_mean_and_std = getattr(args, 'imagenet_default_mean_and_std', True)
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
scale=scale,
mean=IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN,
std=IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
test_size = args.input_size
crop = test_size < 320
test_interpolation = str_to_interp_mode(getattr(args, 'test_interpolation', 'bicubic'))
if resize_im:
if crop:
size = int((256 / 224) * test_size)
t.append(
transforms.Resize(size, interpolation=test_interpolation), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(test_size))
else:
t.append(
transforms.Resize((test_size,test_size), interpolation=test_interpolation), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.ToTensor())
# t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
if imagenet_default_mean_and_std:
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
else:
t.append(transforms.Normalize(IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD))
return transforms.Compose(t)
def build_dataset_relabel(args):
from relabel.label_transforms_factory import create_token_label_transform
from relabel.dataset import DatasetTokenLabel
scale = getattr(args, 'scale', None)
transform = create_token_label_transform(
input_size=args.input_size,
is_training=True,
use_prefetcher=False,
no_aug=False,
scale=scale,
ratio=None,
hflip=0.5,
vflip=0.,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
mean=IMAGENET_DEFAULT_MEAN,
std=IMAGENET_DEFAULT_STD,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
re_num_splits=0,
crop_pct=None,
tf_preprocessing=False,
separate=False,
)
dataset = DatasetTokenLabel(args.root_dir_train, args.meta_file_train, args.label_dir)
dataset.transform = transform
nb_classes = 1000
return dataset, nb_classes