-
class RNNCellDeviceWrapper
: Operator that ensures an RNNCell runs on a particular device. -
class RNNCellDropoutWrapper
: Operator adding dropout to inputs and outputs of the given cell. -
class RNNCellResidualWrapper
: RNNCell wrapper that ensures cell inputs are added to the outputs.
-
all_candidate_sampler(...)
: Generate the set of all classes. -
atrous_conv2d(...)
: Atrous convolution (a.k.a. convolution with holes or dilated convolution). -
atrous_conv2d_transpose(...)
: The transpose ofatrous_conv2d
. -
avg_pool(...)
: Performs the avg pooling on the input. -
avg_pool1d(...)
: Performs the average pooling on the input. -
avg_pool2d(...)
: Performs the average pooling on the input. -
avg_pool3d(...)
: Performs the average pooling on the input. -
batch_norm_with_global_normalization(...)
: Batch normalization. -
batch_normalization(...)
: Batch normalization. -
bias_add(...)
: Addsbias
tovalue
. -
collapse_repeated(...)
: Merge repeated labels into single labels. -
compute_accidental_hits(...)
: Compute the position ids insampled_candidates
matchingtrue_classes
. -
compute_average_loss(...)
: Scales per-example losses with sample_weights and computes their average. -
conv1d(...)
: Computes a 1-D convolution given 3-D input and filter tensors. -
conv1d_transpose(...)
: The transpose ofconv1d
. -
conv2d(...)
: Computes a 2-D convolution giveninput
and 4-Dfilters
tensors. -
conv2d_transpose(...)
: The transpose ofconv2d
. -
conv3d(...)
: Computes a 3-D convolution given 5-Dinput
andfilters
tensors. -
conv3d_transpose(...)
: The transpose ofconv3d
. -
conv_transpose(...)
: The transpose ofconvolution
. -
convolution(...)
: Computes sums of N-D convolutions (actually cross-correlation). -
crelu(...)
: Computes Concatenated ReLU. -
ctc_beam_search_decoder(...)
: Performs beam search decoding on the logits given in input. -
ctc_greedy_decoder(...)
: Performs greedy decoding on the logits given in input (best path). -
ctc_loss(...)
: Computes CTC (Connectionist Temporal Classification) loss.ctc_unique_labels(...)
: Get unique labels and indices for batched labels fortf.nn.ctc_loss
. | -
depth_to_space(...)
: DepthToSpace for tensors of type T. -
depthwise_conv2d(...)
: Depthwise 2-D convolution. -
depthwise_conv2d_backprop_filter(...)
: Computes the gradients of depthwise convolution with respect to the filter. -
depthwise_conv2d_backprop_input(...)
: Computes the gradients of depthwise convolution with respect to the input. -
dilation2d(...)
: Computes the grayscale dilation of 4-Dinput
and 3-Dfilters
tensors. -
dropout(...)
: Computes dropout: randomly sets elements to zero to prevent overfitting. -
elu(...)
: Computes exponential linear:exp(features) - 1
if < 0,features
otherwise. -
embedding_lookup(...)
: Looks up embeddings for the givenids
from a list of tensors. -
embedding_lookup_sparse(...)
: Looks up embeddings for the given ids and weights from a list of tensors. -
erosion2d(...)
: Computes the grayscale erosion of 4-Dvalue
and 3-Dfilters
tensors. -
fixed_unigram_candidate_sampler(...)
: Samples a set of classes using the provided (fixed) base distribution. -
fractional_avg_pool(...)
: Performs fractional average pooling on the input. -
fractional_max_pool(...)
: Performs fractional max pooling on the input. -
gelu(...)
: Compute the Gaussian Error Linear Unit (GELU) activation function. -
in_top_k(...)
: Says whether the targets are in the topK
predictions. -
isotonic_regression(...)
: Solves isotonic regression problems along the given axis. -
l2_loss(...)
: L2 Loss. -
l2_normalize(...)
: Normalizes along dimensionaxis
using an L2 norm. -
leaky_relu(...)
: Compute the Leaky ReLU activation function. -
learned_unigram_candidate_sampler(...)
: Samples a set of classes from a distribution learned during training. -
local_response_normalization(...)
: Local Response Normalization. -
log_poisson_loss(...)
: Computes log Poisson loss givenlog_input
. -
log_softmax(...)
: Computes log softmax activations. -
lrn(...)
: Local Response Normalization. -
max_pool(...)
: Performs the max pooling on the input. -
max_pool1d(...)
: Performs the max pooling on the input. -
max_pool2d(...)
: Performs the max pooling on the input. -
max_pool3d(...)
: Performs the max pooling on the input. -
max_pool_with_argmax(...)
: Performs max pooling on the input and outputs both max values and indices. -
moments(...)
: Calculates the mean and variance ofx
. -
nce_loss(...)
: Computes and returns the noise-contrastive estimation training loss. -
normalize_moments(...)
: Calculate the mean and variance of based on the sufficient statistics. -
pool(...)
: Performs an N-D pooling operation. -
relu(...)
: Computes rectified linear:max(features, 0)
. -
relu6(...)
: Computes Rectified Linear 6:min(max(features, 0), 6)
. -
safe_embedding_lookup_sparse(...)
: Lookup embedding results, accounting for invalid IDs and empty features. -
sampled_softmax_loss(...)
: Computes and returns the sampled softmax training loss. -
scale_regularization_loss(...)
: Scales the sum of the given regularization losses by number of replicas. -
selu(...)
: Computes scaled exponential linear:scale * alpha * (exp(features) - 1)
-
separable_conv2d(...)
: 2-D convolution with separable filters. -
sigmoid(...)
: Computes sigmoid ofx
element-wise. -
sigmoid_cross_entropy_with_logits(...)
: Computes sigmoid cross entropy givenlogits
. -
silu(...)
: Computes the SiLU or Swish activation function:x * sigmoid(x)
. -
softmax(...)
: Computes softmax activations. -
softmax_cross_entropy_with_logits(...)
: Computes softmax cross entropy betweenlogits
andlabels
. -
softplus(...)
: Computes softplus:log(exp(features) + 1)
. -
softsign(...)
: Computes softsign:features / (abs(features) + 1)
. -
space_to_batch(...)
: SpaceToBatch for N-D tensors of type T. -
space_to_depth(...)
: SpaceToDepth for tensors of type T. -
sparse_softmax_cross_entropy_with_logits(...)
: Computes sparse softmax cross entropy betweenlogits
andlabels
. -
sufficient_statistics(...)
: Calculate the sufficient statistics for the mean and variance ofx
. -
swish(...)
: Computes the SiLU or Swish activation function:x * sigmoid(x)
. -
tanh(...)
: Computes hyperbolic tangent ofx
element-wise. -
top_k(...)
: Finds values and indices of thek
largest entries for the last dimension. -
weighted_cross_entropy_with_logits(...)
: Computes a weighted cross entropy. -
weighted_moments(...)
: Returns the frequency-weighted mean and variance ofx
. -
with_space_to_batch(...)
: Performsop
on the space-to-batch representation ofinput
. -
zero_fraction(...)
: Returns the fraction of zeros invalue
.