-
class AggregationMethod
: A class listing aggregation methods used to combine gradients. -
class CriticalSection
: Critical section. -
class DType
: Represents the type of the elements in aTensor
. -
class DeviceSpec
: Represents a (possibly partial) specification for a TensorFlow device. -
class GradientTape
: Record operations for automatic differentiation. -
class Graph
: A TensorFlow computation, represented as a dataflow graph. -
class IndexedSlices
: A sparse representation of a set of tensor slices at given indices. -
class IndexedSlicesSpec
: Type specification for atf.IndexedSlices
. -
class Module
: Base neural network module class. -
class Operation
: Represents a graph node that performs computation on tensors. -
class OptionalSpec
: Type specification fortf.experimental.Optional
. -
class RaggedTensor
: Represents a ragged tensor. -
class RaggedTensorSpec
: Type specification for atf.RaggedTensor
. -
class RegisterGradient
: A decorator for registering the gradient function for an op type. -
class SparseTensor
: Represents a sparse tensor. -
class SparseTensorSpec
: Type specification for atf.sparse.SparseTensor
. -
class Tensor
: A tensor is a multidimensional array of elements represented by a -
class TensorArray
: Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays. -
class TensorArraySpec
: Type specification for atf.TensorArray
. -
class TensorShape
: Represents the shape of aTensor
. -
class TensorSpec
: Describes a tf.Tensor. -
class TypeSpec
: Specifies a TensorFlow value type. -
class UnconnectedGradients
: Controls how gradient computation behaves when y does not depend on x. -
class Variable
: See the variable guide. -
class VariableAggregation
: Indicates how a distributed variable will be aggregated. -
class VariableSynchronization
: Indicates when a distributed variable will be synced. -
class constant_initializer
: Initializer that generates tensors with constant values. -
class name_scope
: A context manager for use when defining a Python op. -
class ones_initializer
: Initializer that generates tensors initialized to 1. -
class random_normal_initializer
: Initializer that generates tensors with a normal distribution. -
class random_uniform_initializer
: Initializer that generates tensors with a uniform distribution. -
class zeros_initializer
: Initializer that generates tensors initialized to 0.
-
Assert(...)
: Asserts that the given condition is true. -
abs(...)
: Computes the absolute value of a tensor. -
acos(...)
: Computes acos of x element-wise. -
acosh(...)
: Computes inverse hyperbolic cosine of x element-wise. -
add(...)
: Returns x + y element-wise. -
add_n(...)
: Adds all input tensors element-wise. -
argmax(...)
: Returns the index with the largest value across axes of a tensor. -
argmin(...)
: Returns the index with the smallest value across axes of a tensor. -
argsort(...)
: Returns the indices of a tensor that give its sorted order along an axis. -
as_dtype(...)
: Converts the giventype_value
to aDType
. -
as_string(...)
: Converts each entry in the given tensor to strings. -
asin(...)
: Computes the trignometric inverse sine of x element-wise. -
asinh(...)
: Computes inverse hyperbolic sine of x element-wise. -
assert_equal(...)
: Assert the conditionx == y
holds element-wise. -
assert_greater(...)
: Assert the conditionx > y
holds element-wise. -
assert_less(...)
: Assert the conditionx < y
holds element-wise. -
assert_rank(...)
: Assert thatx
has rank equal torank
. -
atan(...)
: Computes the trignometric inverse tangent of x element-wise. -
atan2(...)
: Computes arctangent ofy/x
element-wise, respecting signs of the arguments. -
atanh(...)
: Computes inverse hyperbolic tangent of x element-wise. -
batch_to_space(...)
: BatchToSpace for N-D tensors of type T. -
bitcast(...)
: Bitcasts a tensor from one type to another without copying data. -
boolean_mask(...)
: Apply boolean mask to tensor. -
broadcast_dynamic_shape(...)
: Computes the shape of a broadcast given symbolic shapes. -
broadcast_static_shape(...)
: Computes the shape of a broadcast given known shapes. -
broadcast_to(...)
: Broadcast an array for a compatible shape. -
case(...)
: Create a case operation. -
cast(...)
: Casts a tensor to a new type. -
clip_by_global_norm(...)
: Clips values of multiple tensors by the ratio of the sum of their norms. -
clip_by_norm(...)
: Clips tensor values to a maximum L2-norm. -
clip_by_value(...)
: Clips tensor values to a specified min and max. -
complex(...)
: Converts two real numbers to a complex number. -
concat(...)
: Concatenates tensors along one dimension. -
cond(...)
: Returntrue_fn()
if the predicatepred
is true elsefalse_fn()
. -
constant(...)
: Creates a constant tensor from a tensor-like object. -
control_dependencies(...)
: Wrapper forGraph.control_dependencies()
using the default graph. -
convert_to_tensor(...)
: Converts the givenvalue
to aTensor
. -
cos(...)
: Computes cos of x element-wise. -
cosh(...)
: Computes hyperbolic cosine of x element-wise. -
cumsum(...)
: Compute the cumulative sum of the tensorx
alongaxis
. -
custom_gradient(...)
: Decorator to define a function with a custom gradient. -
device(...)
: Specifies the device for ops created/executed in this context. -
divide(...)
: Computes Python style division ofx
byy
. -
dynamic_partition(...)
: Partitionsdata
intonum_partitions
tensors using indices frompartitions
. -
dynamic_stitch(...)
: Interleave the values from thedata
tensors into a single tensor. -
edit_distance(...)
: Computes the Levenshtein distance between sequences. -
eig(...)
: Computes the eigen decomposition of a batch of matrices. -
eigvals(...)
: Computes the eigenvalues of one or more matrices. -
einsum(...)
: Tensor contraction over specified indices and outer product. -
ensure_shape(...)
: Updates the shape of a tensor and checks at runtime that the shape holds. -
equal(...)
: Returns the truth value of (x == y) element-wise. -
executing_eagerly(...)
: Checks whether the current thread has eager execution enabled. -
exp(...)
: Computes exponential of x element-wise. (y = e^x). -
expand_dims(...)
: Returns a tensor with a length 1 axis inserted at indexaxis
. -
extract_volume_patches(...)
: Extractpatches
frominput
and put them in the"depth"
output dimension. 3D extension ofextract_image_patches
. -
eye(...)
: Construct an identity matrix, or a batch of matrices. -
fill(...)
: Creates a tensor filled with a scalar value. -
fingerprint(...)
: Generates fingerprint values. -
floor(...)
: Returns element-wise largest integer not greater than x. -
foldl(...)
: foldl on the list of tensors unpacked fromelems
on dimension 0. (deprecated argument values) -
foldr(...)
: foldr on the list of tensors unpacked fromelems
on dimension 0. (deprecated argument values) -
function(...)
: Compiles a function into a callable TensorFlow graph. -
gather(...)
: Gather slices from params axisaxis
according to indices. -
gather_nd(...)
: Gather slices fromparams
into a Tensor with shape specified byindices
. -
get_logger(...)
: Return TF logger instance. -
get_static_value(...)
: Returns the constant value of the given tensor, if efficiently calculable. -
grad_pass_through(...)
: Creates a grad-pass-through op with the forward behavior provided in f. -
gradients(...)
: Constructs symbolic derivatives of sum ofys
w.r.t. x inxs
. -
greater(...)
: Returns the truth value of (x > y) element-wise. -
greater_equal(...)
: Returns the truth value of (x >= y) element-wise. -
group(...)
: Create an op that groups multiple operations. -
guarantee_const(...)
: Gives a guarantee to the TF runtime that the input tensor is a constant. -
hessians(...)
: Constructs the Hessian of sum ofys
with respect tox
inxs
. -
histogram_fixed_width(...)
: Return histogram of values. -
histogram_fixed_width_bins(...)
: Bins the given values for use in a histogram. -
identity(...)
: Return a Tensor with the same shape and contents as input. -
identity_n(...)
: Returns a list of tensors with the same shapes and contents as the input -
import_graph_def(...)
: Imports the graph fromgraph_def
into the current defaultGraph
. (deprecated arguments) -
init_scope(...)
: A context manager that lifts ops out of control-flow scopes and function-building graphs. -
inside_function(...)
: Indicates whether the caller code is executing inside atf.function
. -
is_tensor(...)
: Checks whetherx
is a TF-native type that can be passed to many TF ops. -
less(...)
: Returns the truth value of (x < y) element-wise. -
less_equal(...)
: Returns the truth value of (x <= y) element-wise. -
linspace(...)
: Generates evenly-spaced values in an interval along a given axis. -
load_library(...)
: Loads a TensorFlow plugin. -
load_op_library(...)
: Loads a TensorFlow plugin, containing custom ops and kernels. -
logical_and(...)
: Logical AND function. -
logical_not(...)
: Returns the truth value ofNOT x
element-wise. -
logical_or(...)
: Returns the truth value of x OR y element-wise. -
make_ndarray(...)
: Create a numpy ndarray from a tensor. -
make_tensor_proto(...)
: Create a TensorProto. -
map_fn(...)
: Transformselems
by applyingfn
to each element unstacked on axis 0. (deprecated arguments) -
matmul(...)
: Multiplies matrixa
by matrixb
, producinga
*b
. -
matrix_square_root(...)
: Computes the matrix square root of one or more square matrices: -
maximum(...)
: Returns the max of x and y (i.e. x > y ? x : y) element-wise. -
meshgrid(...)
: Broadcasts parameters for evaluation on an N-D grid. -
minimum(...)
: Returns the min of x and y (i.e. x < y ? x : y) element-wise. -
multiply(...)
: Returns an element-wise x * y. -
negative(...)
: Computes numerical negative value element-wise. -
no_gradient(...)
: Specifies that ops of typeop_type
is not differentiable. -
no_op(...)
: Does nothing. Only useful as a placeholder for control edges. -
nondifferentiable_batch_function(...)
: Batches the computation done by the decorated function. -
norm(...)
: Computes the norm of vectors, matrices, and tensors. -
not_equal(...)
: Returns the truth value of (x != y) element-wise. -
numpy_function(...)
: Wraps a python function and uses it as a TensorFlow op. -
one_hot(...)
: Returns a one-hot tensor. -
ones(...)
: Creates a tensor with all elements set to one (1). -
ones_like(...)
: Creates a tensor of all ones that has the same shape as the input. -
pad(...)
: Pads a tensor. -
parallel_stack(...)
: Stacks a list of rank-R
tensors into one rank-(R+1)
tensor in parallel. -
pow(...)
: Computes the power of one value to another. -
print(...)
: Print the specified inputs. -
py_function(...)
: Wraps a python function into a TensorFlow op that executes it eagerly. -
quantize_and_dequantize_v4(...)
: Returns the gradient ofQuantizeAndDequantizeV4
. -
range(...)
: Creates a sequence of numbers. -
rank(...)
: Returns the rank of a tensor. -
realdiv(...)
: Returns x / y element-wise for real types. -
recompute_grad(...)
: An eager-compatible version of recompute_grad. -
reduce_all(...)
: Computes the "logical and" of elements across dimensions of a tensor. -
reduce_any(...)
: Computes the "logical or" of elements across dimensions of a tensor. -
reduce_logsumexp(...)
: Computes log(sum(exp(elements across dimensions of a tensor))). -
reduce_max(...)
: Computes the maximum of elements across dimensions of a tensor. -
reduce_mean(...)
: Computes the mean of elements across dimensions of a tensor. -
reduce_min(...)
: Computes the minimum of elements across dimensions of a tensor. -
reduce_prod(...)
: Computes the product of elements across dimensions of a tensor. -
reduce_sum(...)
: Computes the sum of elements across dimensions of a tensor. -
register_tensor_conversion_function(...)
: Registers a function for converting objects ofbase_type
toTensor
. -
repeat(...)
: Repeat elements ofinput
. -
required_space_to_batch_paddings(...)
: Calculate padding required to make block_shape divide input_shape. -
reshape(...)
: Reshapes a tensor. -
reverse(...)
: Reverses specific dimensions of a tensor. -
reverse_sequence(...)
: Reverses variable length slices. -
roll(...)
: Rolls the elements of a tensor along an axis. -
round(...)
: Rounds the values of a tensor to the nearest integer, element-wise. -
saturate_cast(...)
: Performs a safe saturating cast ofvalue
todtype
. -
scalar_mul(...)
: Multiplies a scalar times aTensor
orIndexedSlices
object. -
scan(...)
: scan on the list of tensors unpacked fromelems
on dimension 0. (deprecated argument values) -
scatter_nd(...)
: Scatterupdates
into a new tensor according toindices
. -
searchsorted(...)
: Searches input tensor for values on the innermost dimension. -
sequence_mask(...)
: Returns a mask tensor representing the first N positions of each cell. -
shape(...)
: Returns a tensor containing the shape of the input tensor. -
shape_n(...)
: Returns shape of tensors. -
sigmoid(...)
: Computes sigmoid ofx
element-wise. -
sign(...)
: Returns an element-wise indication of the sign of a number. -
sin(...)
: Computes sine of x element-wise. -
sinh(...)
: Computes hyperbolic sine of x element-wise. -
size(...)
: Returns the size of a tensor. -
slice(...)
: Extracts a slice from a tensor. -
sort(...)
: Sorts a tensor. -
space_to_batch(...)
: SpaceToBatch for N-D tensors of type T. -
space_to_batch_nd(...)
: SpaceToBatch for N-D tensors of type T. -
split(...)
: Splits a tensorvalue
into a list of sub tensors. -
sqrt(...)
: Computes element-wise square root of the input tensor. -
square(...)
: Computes square of x element-wise. -
squeeze(...)
: Removes dimensions of size 1 from the shape of a tensor. -
stack(...)
: Stacks a list of rank-R
tensors into one rank-(R+1)
tensor. -
stop_gradient(...)
: Stops gradient computation. -
strided_slice(...)
: Extracts a strided slice of a tensor (generalized Python array indexing). -
subtract(...)
: Returns x - y element-wise. -
switch_case(...)
: Create a switch/case operation, i.e. an integer-indexed conditional. -
tan(...)
: Computes tan of x element-wise. -
tanh(...)
: Computes hyperbolic tangent ofx
element-wise. -
tensor_scatter_nd_add(...)
: Adds sparseupdates
to an existing tensor according toindices
. -
tensor_scatter_nd_max(...)
-
tensor_scatter_nd_min(...)
-
tensor_scatter_nd_sub(...)
: Subtracts sparseupdates
from an existing tensor according toindices
. -
tensor_scatter_nd_update(...)
: "Scatterupdates
into an existing tensor according toindices
. -
tensordot(...)
: Tensor contraction of a and b along specified axes and outer product. -
tile(...)
: Constructs a tensor by tiling a given tensor. -
timestamp(...)
: Provides the time since epoch in seconds. -
transpose(...)
: Transposesa
, wherea
is a Tensor. -
truediv(...)
: Divides x / y elementwise (using Python 3 division operator semantics). -
truncatediv(...)
: Returns x / y element-wise for integer types. -
truncatemod(...)
: Returns element-wise remainder of division. This emulates C semantics in that -
tuple(...)
: Group tensors together. -
type_spec_from_value(...)
: Returns atf.TypeSpec
that represents the givenvalue
. -
unique(...)
: Finds unique elements in a 1-D tensor. -
unique_with_counts(...)
: Finds unique elements in a 1-D tensor. -
unravel_index(...)
: Converts an array of flat indices into a tuple of coordinate arrays. -
unstack(...)
: Unpacks the given dimension of a rank-R
tensor into rank-(R-1)
tensors. -
variable_creator_scope(...)
: Scope which defines a variable creation function to be used by variable(). -
vectorized_map(...)
: Parallel map on the list of tensors unpacked fromelems
on dimension 0. -
where(...)
: Return the elements wherecondition
isTrue
(multiplexingx
andy
). -
while_loop(...)
: Repeatbody
while the conditioncond
is true. (deprecated argument values) -
zeros(...)
: Creates a tensor with all elements set to zero. -
zeros_like(...)
: Creates a tensor with all elements set to zero.