-
-
Notifications
You must be signed in to change notification settings - Fork 216
/
Copy pathutils.jl
347 lines (313 loc) · 12.4 KB
/
utils.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
using Test
using ModelingToolkit
using Graphs
using SparseArrays
using UnPack
using ModelingToolkit: t_nounits as t, D_nounits as D, default_toterm
using Symbolics: unwrap
using DataInterpolations
const ST = StructuralTransformations
# Define some variables
@parameters L g
@variables x(t) y(t) w(t) z(t) T(t)
# Simple pendulum in cartesian coordinates
eqs = [D(x) ~ w,
D(y) ~ z,
D(w) ~ T * x,
D(z) ~ T * y - g,
0 ~ x^2 + y^2 - L^2]
pendulum = ODESystem(eqs, t, [x, y, w, z, T], [L, g], name = :pendulum)
state = TearingState(pendulum)
StructuralTransformations.find_solvables!(state)
sss = state.structure
@unpack graph, solvable_graph, var_to_diff = sss
@test graph.fadjlist == [[1, 7], [2, 8], [3, 5, 9], [4, 6, 9], [5, 6]]
@test length(graph.badjlist) == 9
@test ne(graph) == nnz(incidence_matrix(graph)) == 12
@test nv(solvable_graph) == 9 + 5
let N = nothing
@test var_to_diff == [N, N, N, N, 1, 2, 3, 4, N]
end
se = collect(StructuralTransformations.edges(graph))
@test se == mapreduce(vcat, enumerate(graph.fadjlist)) do (s, d)
StructuralTransformations.BipartiteEdge.(s, d)
end
@testset "observed2graph handles unknowns inside callable parameters" begin
@variables x(t) y(t)
@parameters p(..)
g, _ = ModelingToolkit.observed2graph([y ~ p(x), x ~ 0], [y, x])
@test ModelingToolkit.𝑠neighbors(g, 1) == [2]
@test ModelingToolkit.𝑑neighbors(g, 2) == [1]
end
@testset "array observed used unscalarized in another observed" begin
@variables x(t) y(t)[1:2] z(t)[1:2]
@parameters foo(::AbstractVector)[1:2]
_tmp_fn(x) = 2x
@mtkbuild sys = ODESystem(
[D(x) ~ z[1] + z[2] + foo(z)[1], y[1] ~ 2t, y[2] ~ 3t, z ~ foo(y)], t)
@test length(equations(sys)) == 1
@test length(observed(sys)) == 7
@test any(eq -> isequal(eq.lhs, y), observed(sys))
@test any(eq -> isequal(eq.lhs, z), observed(sys))
prob = ODEProblem(sys, [x => 1.0], (0.0, 1.0), [foo => _tmp_fn])
@test_nowarn prob.f(prob.u0, prob.p, 0.0)
isys = ModelingToolkit.generate_initializesystem(sys)
@test length(unknowns(isys)) == 5
@test length(equations(isys)) == 4
@test !any(equations(isys)) do eq
iscall(eq.rhs) && operation(eq.rhs) in [StructuralTransformations.getindex_wrapper,
StructuralTransformations.change_origin]
end
end
@testset "scalarized array observed calling same function multiple times" begin
@variables x(t) y(t)[1:2]
@parameters foo(::Real)[1:2]
val = Ref(0)
function _tmp_fn2(x)
val[] += 1
return [x, 2x]
end
@mtkbuild sys = ODESystem([D(x) ~ y[1] + y[2], y ~ foo(x)], t)
@test length(equations(sys)) == 1
@test length(observed(sys)) == 3
prob = ODEProblem(sys, [x => 1.0], (0.0, 1.0), [foo => _tmp_fn2])
val[] = 0
@test_nowarn prob.f(prob.u0, prob.p, 0.0)
@test val[] == 1
isys = ModelingToolkit.generate_initializesystem(sys)
@test length(unknowns(isys)) == 3
@test length(equations(isys)) == 2
@test !any(equations(isys)) do eq
iscall(eq.rhs) && operation(eq.rhs) in [StructuralTransformations.getindex_wrapper,
StructuralTransformations.change_origin]
end
@testset "CSE hack in equations(sys)" begin
val[] = 0
@variables z(t)[1:2]
@mtkbuild sys = ODESystem(
[D(y) ~ foo(x), D(x) ~ sum(y), zeros(2) ~ foo(prod(z))], t)
@test length(equations(sys)) == 5
@test length(observed(sys)) == 2
prob = ODEProblem(
sys, [y => ones(2), z => 2ones(2), x => 3.0], (0.0, 1.0), [foo => _tmp_fn2])
val[] = 0
@test_nowarn prob.f(prob.u0, prob.p, 0.0)
@test val[] == 2
isys = ModelingToolkit.generate_initializesystem(sys)
@test length(unknowns(isys)) == 5
@test length(equations(isys)) == 2
@test !any(equations(isys)) do eq
iscall(eq.rhs) &&
operation(eq.rhs) in [StructuralTransformations.getindex_wrapper,
StructuralTransformations.change_origin]
end
end
end
@testset "array and cse hacks can be disabled" begin
@testset "fully_determined = true" begin
@variables x(t) y(t)[1:2] z(t)[1:2]
@parameters foo(::AbstractVector)[1:2]
_tmp_fn(x) = 2x
@named sys = ODESystem(
[D(x) ~ z[1] + z[2] + foo(z)[1], y[1] ~ 2t, y[2] ~ 3t, z ~ foo(y)], t)
sys1 = structural_simplify(sys; cse_hack = false)
@test length(observed(sys1)) == 6
@test !any(observed(sys1)) do eq
iscall(eq.rhs) &&
operation(eq.rhs) == StructuralTransformations.getindex_wrapper
end
sys2 = structural_simplify(sys; array_hack = false)
@test length(observed(sys2)) == 5
@test !any(observed(sys2)) do eq
iscall(eq.rhs) && operation(eq.rhs) == StructuralTransformations.change_origin
end
end
@testset "fully_determined = false" begin
@variables x(t) y(t)[1:2] z(t)[1:2] w(t)
@parameters foo(::AbstractVector)[1:2]
_tmp_fn(x) = 2x
@named sys = ODESystem(
[D(x) ~ z[1] + z[2] + foo(z)[1] + w, y[1] ~ 2t, y[2] ~ 3t, z ~ foo(y)], t)
sys1 = structural_simplify(sys; cse_hack = false, fully_determined = false)
@test length(observed(sys1)) == 6
@test !any(observed(sys1)) do eq
iscall(eq.rhs) &&
operation(eq.rhs) == StructuralTransformations.getindex_wrapper
end
sys2 = structural_simplify(sys; array_hack = false, fully_determined = false)
@test length(observed(sys2)) == 5
@test !any(observed(sys2)) do eq
iscall(eq.rhs) && operation(eq.rhs) == StructuralTransformations.change_origin
end
end
end
@testset "additional passes" begin
@variables x(t) y(t)
@named sys = ODESystem([D(x) ~ x, y ~ x + t], t)
value = Ref(0)
pass(sys; kwargs...) = (value[] += 1; return sys)
structural_simplify(sys; additional_passes = [pass])
@test value[] == 1
end
@testset "Distribute shifts" begin
@variables x(t) y(t) z(t)
@parameters a b c
k = ShiftIndex(t)
# Expand shifts
@test isequal(
ST.distribute_shift(Shift(t, -1)(x + y)), Shift(t, -1)(x) + Shift(t, -1)(y))
expr = a * Shift(t, -2)(x) + Shift(t, 2)(y) + b
@test isequal(ST.simplify_shifts(ST.distribute_shift(Shift(t, 2)(expr))),
a * x + Shift(t, 4)(y) + b)
@test isequal(ST.distribute_shift(Shift(t, 2)(exp(z))), exp(Shift(t, 2)(z)))
@test isequal(ST.distribute_shift(Shift(t, 2)(exp(a) + b)), exp(a) + b)
expr = a^x - log(b * y) + z * x
@test isequal(ST.distribute_shift(Shift(t, -3)(expr)),
a^(Shift(t, -3)(x)) - log(b * Shift(t, -3)(y)) + Shift(t, -3)(z) * Shift(t, -3)(x))
expr = x(k + 1) ~ x + x(k - 1)
@test isequal(ST.distribute_shift(Shift(t, -1)(expr)), x ~ x(k - 1) + x(k - 2))
end
@testset "`map_variables_to_equations`" begin
@testset "Not supported for systems without `.tearing_state`" begin
@variables x
@mtkbuild sys = OptimizationSystem(x^2)
@test_throws ArgumentError map_variables_to_equations(sys)
end
@testset "Requires simplified system" begin
@variables x(t) y(t)
@named sys = ODESystem([D(x) ~ x, y ~ 2x], t)
sys = complete(sys)
@test_throws ArgumentError map_variables_to_equations(sys)
end
@testset "`ODESystem`" begin
@variables x(t) y(t) z(t)
@mtkbuild sys = ODESystem([D(x) ~ 2x + y, y ~ x + z, z^3 + x^3 ~ 12], t)
mapping = map_variables_to_equations(sys)
@test mapping[x] == (D(x) ~ 2x + y)
@test mapping[y] == (y ~ x + z)
@test mapping[z] == (0 ~ 12 - z^3 - x^3)
@test length(mapping) == 3
@testset "With dummy derivatives" begin
@parameters g
@variables x(t) y(t) [state_priority = 10] λ(t)
eqs = [D(D(x)) ~ λ * x
D(D(y)) ~ λ * y - g
x^2 + y^2 ~ 1]
@mtkbuild sys = ODESystem(eqs, t)
mapping = map_variables_to_equations(sys)
yt = default_toterm(unwrap(D(y)))
xt = default_toterm(unwrap(D(x)))
xtt = default_toterm(unwrap(D(D(x))))
@test mapping[x] == (0 ~ 1 - x^2 - y^2)
@test mapping[y] == (D(y) ~ yt)
@test mapping[D(y)] == (D(yt) ~ -g + y * λ)
@test mapping[D(x)] == (0 ~ -2xt * x - 2yt * y)
@test mapping[D(D(x))] == (xtt ~ x * λ)
@test length(mapping) == 5
@testset "`rename_dummy_derivatives = false`" begin
mapping = map_variables_to_equations(sys; rename_dummy_derivatives = false)
@test mapping[x] == (0 ~ 1 - x^2 - y^2)
@test mapping[y] == (D(y) ~ yt)
@test mapping[yt] == (D(yt) ~ -g + y * λ)
@test mapping[xt] == (0 ~ -2xt * x - 2yt * y)
@test mapping[xtt] == (xtt ~ x * λ)
@test length(mapping) == 5
end
end
@testset "DDEs" begin
function oscillator(; name, k = 1.0, τ = 0.01)
@parameters k=k τ=τ
@variables x(..)=0.1 y(t)=0.1 jcn(t)=0.0 delx(t)
eqs = [D(x(t)) ~ y,
D(y) ~ -k * x(t - τ) + jcn,
delx ~ x(t - τ)]
return System(eqs, t; name = name)
end
systems = @named begin
osc1 = oscillator(k = 1.0, τ = 0.01)
osc2 = oscillator(k = 2.0, τ = 0.04)
end
eqs = [osc1.jcn ~ osc2.delx,
osc2.jcn ~ osc1.delx]
@named coupledOsc = System(eqs, t)
@mtkbuild sys = compose(coupledOsc, systems)
mapping = map_variables_to_equations(sys)
x1 = operation(unwrap(osc1.x))
x2 = operation(unwrap(osc2.x))
@test mapping[osc1.x] == (D(osc1.x) ~ osc1.y)
@test mapping[osc1.y] == (D(osc1.y) ~ osc1.jcn - osc1.k * x1(t - osc1.τ))
@test mapping[osc1.delx] == (osc1.delx ~ x1(t - osc1.τ))
@test mapping[osc1.jcn] == (osc1.jcn ~ osc2.delx)
@test mapping[osc2.x] == (D(osc2.x) ~ osc2.y)
@test mapping[osc2.y] == (D(osc2.y) ~ osc2.jcn - osc2.k * x2(t - osc2.τ))
@test mapping[osc2.delx] == (osc2.delx ~ x2(t - osc2.τ))
@test mapping[osc2.jcn] == (osc2.jcn ~ osc1.delx)
@test length(mapping) == 8
end
end
@testset "`NonlinearSystem`" begin
@variables x y z
@mtkbuild sys = NonlinearSystem([x^2 ~ 2y^2 + 1, sin(z) ~ y, z^3 + 4z + 1 ~ 0])
mapping = map_variables_to_equations(sys)
@test mapping[x] == (0 ~ 2y^2 + 1 - x^2)
@test mapping[y] == (y ~ sin(z))
@test mapping[z] == (0 ~ -1 - 4z - z^3)
@test length(mapping) == 3
end
end
@testset "Issue#3480: Derivatives of time-dependent parameters" begin
@component function FilteredInput(; name, x0 = 0, T = 0.1)
params = @parameters begin
k(t) = x0
T = T
end
vars = @variables begin
x(t) = k
dx(t) = 0
ddx(t)
end
systems = []
eqs = [D(x) ~ dx
D(dx) ~ ddx
dx ~ (k - x) / T]
return ODESystem(eqs, t, vars, params; systems, name)
end
@mtkbuild sys = FilteredInput()
vs = Set()
for eq in equations(sys)
ModelingToolkit.vars!(vs, eq)
end
for eq in observed(sys)
ModelingToolkit.vars!(vs, eq)
end
@test !(D(sys.k) in vs)
@testset "Called parameter still has derivative" begin
@component function FilteredInput2(; name, x0 = 0, T = 0.1)
ts = collect(0.0:0.1:10.0)
spline = LinearInterpolation(ts .^ 2, ts)
params = @parameters begin
(k::LinearInterpolation)(..) = spline
T = T
end
vars = @variables begin
x(t) = k(t)
dx(t) = 0
ddx(t)
end
systems = []
eqs = [D(x) ~ dx
D(dx) ~ ddx
dx ~ (k(t) - x) / T]
return ODESystem(eqs, t, vars, params; systems, name)
end
@mtkbuild sys = FilteredInput2()
vs = Set()
for eq in equations(sys)
ModelingToolkit.vars!(vs, eq)
end
for eq in observed(sys)
ModelingToolkit.vars!(vs, eq)
end
@test D(sys.k(t)) in vs
end
end