|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | +""" |
| 4 | +Created on Mon Apr 11 12:59:39 2022 |
| 5 | +""" |
| 6 | + |
| 7 | +import cv2 as cv |
| 8 | +import json |
| 9 | +from detectron2.engine import DefaultPredictor |
| 10 | +from detectron2.config import get_cfg |
| 11 | +from detectron2.utils.visualizer import Visualizer |
| 12 | +from detectron2.utils.visualizer import ColorMode |
| 13 | +from detectron2 import model_zoo |
| 14 | +from detectron2.data import MetadataCatalog, DatasetCatalog |
| 15 | +from detectron2.data.datasets import register_coco_instances |
| 16 | +from detectron2.modeling import build_model |
| 17 | +import torch |
| 18 | +import numpy as np |
| 19 | +from PIL import Image |
| 20 | +import time |
| 21 | + |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | + |
| 26 | +class Detector: |
| 27 | + |
| 28 | + def __init__(self): |
| 29 | + |
| 30 | + # set model and test set |
| 31 | + self.model = 'mask_rcnn_R_50_FPN_3x.yaml' |
| 32 | + |
| 33 | + # obtain detectron2's default config |
| 34 | + self.cfg = get_cfg() |
| 35 | + |
| 36 | + # load values from a file |
| 37 | + # self.cfg.merge_from_file("test.yaml") |
| 38 | + self.cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/"+self.model)) |
| 39 | + |
| 40 | + # set device to cpu |
| 41 | + #self.cfg.MODEL.DEVICE = "cuda" |
| 42 | + self.cfg.MODEL.DEVICE = "cpu" |
| 43 | + |
| 44 | + # get weights |
| 45 | + # self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/"+self.model) |
| 46 | + self.cfg.MODEL.WEIGHTS = "/home/iovision/return_img/model_final.pth" |
| 47 | + #self.cfg.MODEL.WEIGHTS = "/home/appuser/return_img_repo/model_final.pth" |
| 48 | + |
| 49 | + # set the testing threshold for this model |
| 50 | + |
| 51 | + self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 |
| 52 | + |
| 53 | + #self.cfg.DATASETS.TEST = ("fold1") |
| 54 | + |
| 55 | + # build model from weights |
| 56 | + # self.cfg.MODEL.WEIGHTS = self.convert_model_for_inference() |
| 57 | + self.cfg.MODEL.ROI_HEADS.NUM_CLASSES = 5 |
| 58 | + self.predictor = DefaultPredictor(self.cfg) |
| 59 | + |
| 60 | + # build model and convert for inference |
| 61 | + def convert_model_for_inference(self): |
| 62 | + |
| 63 | + # build model |
| 64 | + model = build_model(self.cfg) |
| 65 | + |
| 66 | + # save as checkpoint |
| 67 | + torch.save(model.state_dict(), 'checkpoint.pth') |
| 68 | + |
| 69 | + # return path to inference model |
| 70 | + return 'checkpoint.pth' |
| 71 | + |
| 72 | + # detectron model |
| 73 | + # adapted from detectron2 colab notebook: https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5 |
| 74 | + def inference(self, file): |
| 75 | + start= time.time() |
| 76 | + |
| 77 | + im = cv.imread(file) |
| 78 | + outputs = self.predictor(im) |
| 79 | + # with open(self.curr_dir+'/data.txt', 'w') as fp: |
| 80 | + # json.dump(outputs['instances'], fp) |
| 81 | + # # json.dump(cfg.dump(), fp) |
| 82 | + |
| 83 | + # get metadata |
| 84 | + MetadataCatalog.get("mydataset").thing_classes = ['short_sleeved_shirt', 'long_sleeved_shirt', 'long_sleeved_outwear', 'shorts', 'trousers'] |
| 85 | + # visualise |
| 86 | + v = Visualizer(im[:, :, ::-1], metadata=MetadataCatalog.get("mydataset"), scale=1.2) |
| 87 | + v = v.draw_instance_predictions(outputs["instances"].to("cpu")) |
| 88 | + # get image |
| 89 | + img1 = cv.cvtColor(v.get_image()[:, :, ::-1], cv.COLOR_BGR2RGB) |
| 90 | + img = Image.fromarray(np.uint8(img1)) |
| 91 | + end = time.time() |
| 92 | + a= end - start |
| 93 | + # write to jpg |
| 94 | + # cv.imwrite('img.jpg',v.get_image()) |
| 95 | + |
| 96 | + return img, a |
0 commit comments