-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtraining_config.yaml
98 lines (88 loc) · 2.41 KB
/
training_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
general:
project_name: COCO_2017_pose_Demo
logs_dir: logs
saved_models_dir: saved_models
model_path:
model_type: heatmaps_spe
num_threads_tflite: 8
gpu_memory_limit: 8
global_seed: 123
operation_mode: chain_tqeb
#choices=['evaluation', 'quantization', 'benchmarking',
# 'chain_eqe','chain_qb','chain_eqeb']
dataset:
name: COCO2017_pose
keypoints: 17
training_path: ../datasets/coco_train_single_pose
# validation_path: ../datasets/coco_val_single_pose
validation_split: 0.1
test_path: ../datasets/coco_val_single_pose
# quantization_path: ../datasets/coco_train_single_pose
quantization_split: 0.3
preprocessing:
rescaling: { scale: 1/127.5, offset: -1 }
resizing:
aspect_ratio: fit
interpolation: nearest
color_mode: rgb
data_augmentation:
random_periodic_resizing:
image_sizes: [[192,192],[224,224],[256,256]]
random_contrast:
factor: 0.4
random_brightness:
factor: 0.3
random_flip:
mode: horizontal
random_rotation:
factor: (-0.1,0.1) # -+0.1 = -+36 degree angle
training:
model:
name: st_movenet_lightning_heatmaps
alpha: 1.0
input_shape: (192, 192, 3)
pretrained_weights: imagenet
resume_training_from: # experiments_outputs/2024_11_06_16_44_31/
frozen_layers: # (0:154)
batch_size: 64
epochs: 1000
optimizer:
Adam:
learning_rate: 0.01
callbacks:
ReduceLROnPlateau:
monitor: val_oks
mode: max
factor: 0.25
min_delta: 0.0001
patience: 5
ModelCheckpoint:
monitor: val_oks
mode: max
EarlyStopping:
monitor: val_oks
mode: max
min_delta: 0.0001
patience: 10
quantization:
quantizer: TFlite_converter # TFlite_converter or onnx_quantizer
quantization_type: PTQ
quantization_input_type: uint8
quantization_output_type: float
export_dir: quantized_models
# optimize: True
# granularity: per_tensor
tools:
stedgeai:
version: 10.0.0
optimization: balanced
on_cloud: True
path_to_stedgeai: C:/Users/<XXXXX>/STM32Cube/Repository/Packs/STMicroelectronics/X-CUBE-AI/<*.*.*>/Utilities/windows/stedgeai.exe
path_to_cubeIDE: C:/ST/STM32CubeIDE_<*.*.*>/STM32CubeIDE/stm32cubeide.exe
benchmarking: # valid options are STM32N6570-DK, STM32MP257F-EV1, STM32MP157F-DK2, STM32MP135F-DK
board: STM32MP257F-EV1
mlflow:
uri: ./experiments_outputs/mlruns
hydra:
run:
dir: ./experiments_outputs/${now:%Y_%m_%d_%H_%M_%S}