forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg_networks.py
150 lines (136 loc) · 6.28 KB
/
ddpg_networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sample actor(policy) and critic(q) networks to use with DDPG/NAF agents.
The DDPG networks are defined in "Section 7: Experiment Details" of
"Continuous control with deep reinforcement learning" - Lilicrap et al.
https://arxiv.org/abs/1509.02971
The NAF critic network is based on "Section 4" of "Continuous deep Q-learning
with model-based acceleration" - Gu et al. https://arxiv.org/pdf/1603.00748.
"""
import tensorflow as tf
slim = tf.contrib.slim
import gin.tf
@gin.configurable('ddpg_critic_net')
def critic_net(states, actions,
for_critic_loss=False,
num_reward_dims=1,
states_hidden_layers=(400,),
actions_hidden_layers=None,
joint_hidden_layers=(300,),
weight_decay=0.0001,
normalizer_fn=None,
activation_fn=tf.nn.relu,
zero_obs=False,
images=False):
"""Creates a critic that returns q values for the given states and actions.
Args:
states: (castable to tf.float32) a [batch_size, num_state_dims] tensor
representing a batch of states.
actions: (castable to tf.float32) a [batch_size, num_action_dims] tensor
representing a batch of actions.
num_reward_dims: Number of reward dimensions.
states_hidden_layers: tuple of hidden layers units for states.
actions_hidden_layers: tuple of hidden layers units for actions.
joint_hidden_layers: tuple of hidden layers units after joining states
and actions using tf.concat().
weight_decay: Weight decay for l2 weights regularizer.
normalizer_fn: Normalizer function, i.e. slim.layer_norm,
activation_fn: Activation function, i.e. tf.nn.relu, slim.leaky_relu, ...
Returns:
A tf.float32 [batch_size] tensor of q values, or a tf.float32
[batch_size, num_reward_dims] tensor of vector q values if
num_reward_dims > 1.
"""
with slim.arg_scope(
[slim.fully_connected],
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(
factor=1.0/3.0, mode='FAN_IN', uniform=True)):
orig_states = tf.to_float(states)
#states = tf.to_float(states)
states = tf.concat([tf.to_float(states), tf.to_float(actions)], -1) #TD3
if images or zero_obs:
states *= tf.constant([0.0] * 2 + [1.0] * (states.shape[1] - 2)) #LALA
actions = tf.to_float(actions)
if states_hidden_layers:
states = slim.stack(states, slim.fully_connected, states_hidden_layers,
scope='states')
if actions_hidden_layers:
actions = slim.stack(actions, slim.fully_connected, actions_hidden_layers,
scope='actions')
joint = tf.concat([states, actions], 1)
if joint_hidden_layers:
joint = slim.stack(joint, slim.fully_connected, joint_hidden_layers,
scope='joint')
with slim.arg_scope([slim.fully_connected],
weights_regularizer=None,
weights_initializer=tf.random_uniform_initializer(
minval=-0.003, maxval=0.003)):
value = slim.fully_connected(joint, num_reward_dims,
activation_fn=None,
normalizer_fn=None,
scope='q_value')
if num_reward_dims == 1:
value = tf.reshape(value, [-1])
if not for_critic_loss and num_reward_dims > 1:
value = tf.reduce_sum(
value * tf.abs(orig_states[:, -num_reward_dims:]), -1)
return value
@gin.configurable('ddpg_actor_net')
def actor_net(states, action_spec,
hidden_layers=(400, 300),
normalizer_fn=None,
activation_fn=tf.nn.relu,
zero_obs=False,
images=False):
"""Creates an actor that returns actions for the given states.
Args:
states: (castable to tf.float32) a [batch_size, num_state_dims] tensor
representing a batch of states.
action_spec: (BoundedTensorSpec) A tensor spec indicating the shape
and range of actions.
hidden_layers: tuple of hidden layers units.
normalizer_fn: Normalizer function, i.e. slim.layer_norm,
activation_fn: Activation function, i.e. tf.nn.relu, slim.leaky_relu, ...
Returns:
A tf.float32 [batch_size, num_action_dims] tensor of actions.
"""
with slim.arg_scope(
[slim.fully_connected],
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,
weights_initializer=slim.variance_scaling_initializer(
factor=1.0/3.0, mode='FAN_IN', uniform=True)):
states = tf.to_float(states)
orig_states = states
if images or zero_obs: # Zero-out x, y position. Hacky.
states *= tf.constant([0.0] * 2 + [1.0] * (states.shape[1] - 2))
if hidden_layers:
states = slim.stack(states, slim.fully_connected, hidden_layers,
scope='states')
with slim.arg_scope([slim.fully_connected],
weights_initializer=tf.random_uniform_initializer(
minval=-0.003, maxval=0.003)):
actions = slim.fully_connected(states,
action_spec.shape.num_elements(),
scope='actions',
normalizer_fn=None,
activation_fn=tf.nn.tanh)
action_means = (action_spec.maximum + action_spec.minimum) / 2.0
action_magnitudes = (action_spec.maximum - action_spec.minimum) / 2.0
actions = action_means + action_magnitudes * actions
return actions