forked from duckythescientist/SmoothLife
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmoothlife.py
431 lines (340 loc) · 12.5 KB
/
smoothlife.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#!/usr/bin/env python3
"""SmoothLife -- Conway's GoL in continuous space
Re-written in Python using the speedups of Numpy
Notes on porting:
Raffler's original paper uses M to represent the inner cell area
and N to represent the outer cell area.
`BasicRules` is simplified and has some good comments.
`ExtensiveRules` is much more extensive but a little harder to follow.
Thank you to tscheepers for:
Fixing the initialization in add_speckles to be better at scaling.
Figuring out the rules and transition function that work with smooth timesteps.
Todo:
Fancy UI
Refactor. OO design always fails because of nested variable access
Explanations and code (in other language) here:
https://arxiv.org/pdf/1111.1567.pdf
https://0fps.net/2012/11/19/conways-game-of-life-for-curved-surfaces-part-1/
https://jsfiddle.net/mikola/aj2vq/
https://www.youtube.com/watch?v=KJe9H6qS82I
https://sourceforge.net/projects/smoothlife/
"""
import math
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
# # Necessary for writing video
# from skvideo.io import FFmpegWriter
# from matplotlib import cm
def logistic_threshold(x, x0, alpha):
"""Logistic function on x around x0 with transition width alpha
Approximately:
(x - alpha/2) < x0 : 0
(x + alpha/2) > x0 : 1
AKA snm2D.frag:func_smooth
"""
return 1.0 / (1.0 + np.exp(-4.0 / alpha * (x - x0)))
def hard_threshold(x, x0):
"""x > x0 : 1 ? 0
AKA snm2D.frag:func_hard
"""
return np.greater(x, x0)
def linearized_threshold(x, x0, alpha):
"""Threshold x around x0 with a linear transition region alpha
AKA snm2D.frag:func_linear
"""
return np.clip((x - x0) / alpha + 0.5, 0, 1)
def logistic_interval(x, a, b, alpha):
"""Logistic function on x between a and b with transition width alpha
Very approximately:
x < a : 0
a < x < b : 1
x > b : 0
AKA snm2D.frag:sigmoid_ab with sigtype==4
"""
return logistic_threshold(x, a, alpha) * (1.0 - logistic_threshold(x, b, alpha))
def linearized_interval(x, a, b, alpha):
"""Function a<x<b with linearized threshold regions
Very approximately:
x < a : 0
a < x < b : 1
x > b : 0
AKA snm2D.frag:sigmoid_ab with sigtype==1
"""
return linearized_threshold(x, a, alpha) * (1.0 - linearized_threshold(x, b, alpha))
def lerp(a, b, t):
"""Linear intererpolate from a to b with t ranging [0,1]
AKA: OpenGL mix
"""
return (1.0 - t) * a + t * b
class BasicRules:
# Birth range
B1 = 0.278
B2 = 0.365
# Survival range
D1 = 0.267
D2 = 0.445
# Sigmoid widths
N = 0.028
M = 0.147
def __init__(self, **kwargs):
for k, v in kwargs.items():
if hasattr(self, k):
setattr(self, k, v)
else:
raise ValueError("Unexpected attribute %s" % k)
def clear(self):
pass
def s(self, n, m, field):
"""State transition function
This corresponds to SmoothLifeSDL with:
sigmode: 4
sigtype: 4
mixtype: 4
"""
# Convert the local cell average `m` to a metric of how alive the local cell is.
# We transition around 0.5 (0 is fully dead and 1 is fully alive).
# The transition width is set by `self.M`
aliveness = logistic_threshold(m, 0.5, self.M)
# A fully dead cell will become alive if the neighbor density is between B1 and B2.
# A fully alive cell will stay alive if the neighhbor density is between D1 and D2.
# Interpolate between the two sets of thresholds depending on how alive/dead the cell is.
threshold1 = lerp(self.B1, self.D1, aliveness)
threshold2 = lerp(self.B2, self.D2, aliveness)
# Now with the smoothness of `logistic_interval` determine if the neighbor density is
# inside of the threshold to stay/become alive.
new_aliveness = logistic_interval(n, threshold1, threshold2, self.N)
return np.clip(new_aliveness, 0, 1)
class ExtensiveRules(BasicRules):
"""Rules from Rafler's SmoothLifeSDL snm2D.frag"""
sigmode = 0
sigtype = 0
mixtype = 0
timestep_mode = 0
dt = 0.1
# History for timestep_mode 5
esses = [None] * 3
esses_count = 0
def sigmoid_ab(self, x, a, b):
if self.sigtype == 0:
return hard_threshold(x, a) * (1 - hard_threshold(x, b))
elif self.sigtype == 1:
return linearized_interval(x, a, b, self.N)
elif self.sigtype == 4:
return logistic_interval(x, a, b, self.N)
else:
raise NotImplementedError
def sigmoid_mix(self, x, y, m):
if self.mixtype == 0:
intermediate = hard_threshold(m, 0.5)
elif self.mixtype == 1:
intermediate = linearized_threshold(m, 0.5, self.M)
elif self.mixtype == 4:
intermediate = logistic_threshold(m, 0.5, self.M)
else:
raise NotImplementedError
return lerp(x, y, intermediate)
def clear(self):
self.esses = [None] * 3
self.esses_count = 0
def s(self, n, m, field):
if self.sigmode == 1:
b_thresh = self.sigmoid_ab(n, self.B1, self.B2)
d_thresh = self.sigmoid_ab(n, self.D1, self.D2)
transition = lerp(b_thresh, d_thresh, m)
elif self.sigmode == 2:
b_thresh = self.sigmoid_ab(n, self.B1, self.B2)
d_thresh = self.sigmoid_ab(n, self.D1, self.D2)
transition = self.sigmoid_mix(b_thresh, d_thresh, m)
elif self.sigmode == 3:
threshold1 = lerp(self.B1, self.D1, m)
threshold2 = lerp(self.B2, self.D2, m)
transition = self.sigmoid_ab(n, threshold1, threshold2)
elif self.sigmode == 4:
threshold1 = self.sigmoid_mix(self.B1, self.D1, m)
threshold2 = self.sigmoid_mix(self.B2, self.D2, m)
transition = self.sigmoid_ab(n, threshold1, threshold2)
else:
raise NotImplementedError
if self.timestep_mode == 0: # Discrete time step
nextfield = transition
# Or use a solution to the differential equation
elif self.timestep_mode == 1:
nextfield = field + self.dt * (2 * transition - 1)
elif self.timestep_mode == 2:
nextfield = field + self.dt * (transition - field)
elif self.timestep_mode == 3:
nextfield = m + self.dt * (2 * transition - 1)
elif self.timestep_mode == 4:
nextfield = m + self.dt * (transition - m)
elif self.timestep_mode == 5:
s0 = transition - m
s1, s2, s3 = self.esses
if self.esses_count == 0:
delta = s0
elif self.esses_count == 1:
delta = (3 * s0 - s1) / 2
elif self.esses_count == 2:
delta = (23 * s0 - 16 * s1 + 5 * s2) / 12
else: # self.esses_count == 3:
delta = (55 * s0 - 59 * s1 + 37 * s2 - 9 * s3) / 24
self.esses = [s0] + self.esses[:-1]
if self.esses_count < 3:
self.esses_count += 1
nextfield = field + self.dt * delta
return np.clip(nextfield, 0, 1)
class SmoothTimestepRules(ExtensiveRules):
# Birth range
B1 = 0.254
B2 = 0.312
# Survival range
D1 = 0.340
D2 = 0.518
sigmode = 2
sigtype = 1
mixtype = 0
timestep_mode = 2
def antialiased_circle(size, radius, roll=True, logres=None):
"""Create a circle with blurred edges
Set roll=False to have the circle centered in the middle of the
matrix. Default is to center at the extremes (best for convolution).
The transition width of the blur scales with the size of the grid.
I'm not actually sure of the math behind it, but it's what was presented
in the code from:
https://0fps.net/2012/11/19/conways-game-of-life-for-curved-surfaces-part-1/
"""
y, x = size
# Get coordinate values of each point
yy, xx = np.mgrid[:y, :x]
# Distance between each point and the center
radiuses = np.sqrt((xx - x / 2) ** 2 + (yy - y / 2) ** 2)
# Scale factor for the transition width
if logres is None:
logres = math.log(min(*size), 2)
with np.errstate(over="ignore"):
# With big radiuses, the exp overflows,
# but 1 / (1 + inf) == 0, so it's fine
logistic = 1 / (1 + np.exp(logres * (radiuses - radius)))
if roll:
logistic = np.roll(logistic, y // 2, axis=0)
logistic = np.roll(logistic, x // 2, axis=1)
return logistic
class Multipliers:
"""Kernel convulution for neighbor integral"""
INNER_RADIUS = 7.0
OUTER_RADIUS = INNER_RADIUS * 3.0
def __init__(self, size, inner_radius=INNER_RADIUS, outer_radius=OUTER_RADIUS):
inner = antialiased_circle(size, inner_radius)
outer = antialiased_circle(size, outer_radius)
annulus = outer - inner
# Scale each kernel so the sum is 1
inner /= np.sum(inner)
annulus /= np.sum(annulus)
# Precompute the FFT's
self.M = np.fft.fft2(inner)
self.N = np.fft.fft2(annulus)
class SmoothLife:
def __init__(self, height, width):
self.width = width
self.height = height
self.multipliers = Multipliers((height, width))
self.rules = BasicRules()
# self.rules = SmoothTimestepRules()
# self.rules = ExtensiveRules( # BasicRules
# B1=0.278,
# B2=0.365,
# D1=0.267,
# D2=0.445,
# sigmode=4,
# sigtype=4,
# mixtype=4,
# timestep_mode=0,
# dt=0,
# )
# self.rules = ExtensiveRules( # SmoothTimestepRules
# B1=0.254,
# B2=0.312,
# D1=0.340,
# D2=0.518,
# sigmode=2,
# sigtype=1,
# mixtype=0,
# timestep_mode=2,
# dt=0.2,
# )
self.clear()
def clear(self):
"""Zero out the field"""
self.field = np.zeros((self.height, self.width))
self.rules.clear()
def step(self):
"""Do timestep and return field"""
# To sum up neighbors, do kernel convolutions
# by multiplying in the frequency domain
# and converting back to spacial domain
field_ = np.fft.fft2(self.field)
M_buffer_ = field_ * self.multipliers.M
N_buffer_ = field_ * self.multipliers.N
M_buffer = np.real(np.fft.ifft2(M_buffer_))
N_buffer = np.real(np.fft.ifft2(N_buffer_))
# Apply transition rules
self.field = self.rules.s(N_buffer, M_buffer, self.field)
return self.field
def add_speckles(self, count=None, intensity=1):
"""Populate field with random living squares
If count unspecified, do a moderately dense fill
"""
if count is None:
count = int(
self.width * self.height / ((self.multipliers.OUTER_RADIUS * 2) ** 2)
)
for i in range(count):
radius = int(self.multipliers.OUTER_RADIUS)
r = np.random.randint(0, self.height - radius)
c = np.random.randint(0, self.width - radius)
self.field[r : r + radius, c : c + radius] = intensity
def show_animation():
w = 1 << 9
h = 1 << 9
# w = 1920
# h = 1080
sl = SmoothLife(h, w)
sl.add_speckles()
sl.step()
fig = plt.figure()
# Nice color maps: viridis, plasma, gray, binary, seismic, gnuplot
im = plt.imshow(
sl.field, animated=True, cmap=plt.get_cmap("viridis"), aspect="equal"
)
def animate(*args):
im.set_array(sl.step())
return (im,)
ani = animation.FuncAnimation(fig, animate, interval=60, blit=True)
plt.show()
def save_animation():
w = 1 << 8
h = 1 << 8
# w = 1920
# h = 1080
sl = SmoothLife(h, w)
sl.add_speckles()
# Matplotlib shoves a horrible border on animation saves.
# We'll do it manually. Ugh
from skvideo.io import FFmpegWriter
from matplotlib import cm
fps = 10
frames = 100
w = FFmpegWriter("smoothlife.mp4", inputdict={"-r": str(fps)})
for i in range(frames):
frame = cm.viridis(sl.field)
frame *= 255
frame = frame.astype("uint8")
w.writeFrame(frame)
sl.step()
w.close()
# Also, webm output isn't working for me,
# so I have to manually convert. Ugh
# ffmpeg -i smoothlife.mp4 -c:v libvpx -b:v 2M smoothlife.webm
if __name__ == "__main__":
show_animation()
# save_animation()