-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
501 lines (375 loc) · 26.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
from netCDF4 import Dataset, num2date
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
import argparse
import ast
import gc
import logging
import math
import sys
import time
import numpy as np
import pandas as pd
import psutil
import tensorflow as tf
from tensorflow.keras.mixed_precision import experimental as mixed_precision
try:
import tensorflow_addons as tfa
except Exception as e:
tfa = None
import data_generators
import custom_losses as cl
import hparameters
import models
import utility
tf.keras.backend.set_floatx('float16')
tf.keras.backend.set_epsilon(1e-3)
try:
gpu_devices = tf.config.list_physical_devices('GPU')
except Exception as e:
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
policy = mixed_precision.Policy('mixed_float16')
mixed_precision.set_policy(policy)
def is_compatible_with(self, other):
"""Returns True if the `other` DType will be converted to this DType.
Monkey patch: incompatibility issues between tfa.optimizers and mixed precision training
The conversion rules are as follows:
```python
DType(T) .is_compatible_with(DType(T)) == True
```
Args:
other: A `DType` (or object that may be converted to a `DType`).
Returns:
True if a Tensor of the `other` `DType` will be implicitly converted to
this `DType`.
"""
other = tf.dtypes.as_dtype(other)
if self._type_enum==19 and other.as_datatype_enum==1:
return True
return self._type_enum in (other.as_datatype_enum,
other.base_dtype.as_datatype_enum)
tf.DType.is_compatible_with = is_compatible_with
class WeatherModel():
"""Handles the Training of the Deep Learning Weather model
Example of how to use:
WeatherModel = WeatherModel( t_params, m_params)
WeatherModel.initialize_scheme_era5Eobs() #Initializes datasets for ERA5 and Eobs
WeatherModel.train_model() #Trains and saves model
"""
def __init__(self, t_params, m_params):
"""Train the TRU_NET Model
"""
self.t_params = t_params
self.m_params = m_params
def initialize_scheme_era5Eobs(self):
"""Initialization scheme for the ERA5 and E-OBS datasets.
This method creates the datasets
"""
# region ---- Parameters related to training length and training reporting frequency
era5_eobs = data_generators.Era5_Eobs( self.t_params, self.m_params)
# hparameters files calculates train_batches assuing we are only evaluating one location,
# therefore we must adjust got multiple locations (loc_count)
self.t_params['train_batches'] = int(self.t_params['train_batches'] * era5_eobs.loc_count)
self.t_params['val_batches'] = int(self.t_params['val_batches'] * era5_eobs.loc_count)
# The fequency at which we report during training and validation i.e every 10% of minibatches report training loss and training mse
self.train_batch_report_freq = max( int(self.t_params['train_batches']*self.t_params['reporting_freq']), 3)
self.val_batch_report_freq = max( int(self.t_params['val_batches']*self.t_params['reporting_freq']), 3)
#endregion
# region ---- Restoring/Creating New Training Records and Restoring training progress
#This training records keeps track of the losses on each epoch
try:
self.df_training_info = pd.read_csv( "checkpoints/{}/checkpoint_scores.csv".format(utility.model_name_mkr(m_params,t_params=self.t_params,htuning=m_params.get('htuning',False))), header=0, index_col=False)
self.df_training_info = self.df_training_info[['Epoch','Train_loss','Train_mse','Val_loss','Val_mse','Checkpoint_Path','Last_Trained_Batch']]
self.start_epoch = int(max([self.df_training_info['Epoch'][0]], default=0))
last_batch = int( self.df_training_info.loc[self.df_training_info['Epoch']==self.start_epoch,'Last_Trained_Batch'].iloc[0] )
if(last_batch in [-1, self.t_params['train_batches']] ):
self.start_epoch = self.start_epoch + 1
self.batches_to_skip = 0
else:
self.batches_to_skip = last_batch
print("Recovered training records")
except FileNotFoundError as e:
#If no file found, then make new training records file
self.df_training_info = pd.DataFrame(columns=['Epoch','Train_loss','Train_mse','Val_loss','Val_mse','Checkpoint_Path','Last_Trained_Batch'] )
self.batches_to_skip = 0
self.start_epoch = 0
print("Did not recover training records. Starting from scratch")
# endregion
# region ---- Defining Model / Optimizer / Losses / Metrics / Records / Checkpoints / Tensorboard
devices = tf.config.get_visible_devices() #tf.config.experimental.list_physical_devices('GPU')
#gpus_names = [ device.name for device in devices if device.device_type == "GPU" ]
#self.strategy = tf.distribute.MirroredStrategy( devices=gpus_names ) #OneDeviceStrategy(device="/GPU:0") #
self.strategy = tf.distribute.MirroredStrategy( )
assert self.t_params['batch_size'] % self.strategy.num_replicas_in_sync == 0
print("Number of Devices used in MirroredStrategy: {}".format(self.strategy.num_replicas_in_sync))
with self.strategy.scope():
#Model
self.strategy_gpu_count = self.strategy.num_replicas_in_sync
self.t_params['gpu_count'] = self.strategy.num_replicas_in_sync
self.model = models.model_loader( self.t_params, self.m_params )
#Optimizer
optimizer = tfa.optimizers.RectifiedAdam( **self.m_params['rec_adam_params'], total_steps=self.t_params['train_batches']*20)
self.optimizer = mixed_precision.LossScaleOptimizer( optimizer, loss_scale=tf.mixed_precision.experimental.DynamicLossScale() )
# These objects will aggregate losses and metrics across batches and epochs
self.loss_agg_batch = tf.keras.metrics.Mean(name='loss_agg_batch' )
self.loss_agg_epoch = tf.keras.metrics.Mean(name="loss_agg_epoch")
self.mse_agg_epoch = tf.keras.metrics.Mean(name='mse_agg_epoch')
self.loss_agg_val = tf.keras.metrics.Mean(name='loss_agg_val')
self.mse_agg_val = tf.keras.metrics.Mean(name='mse_agg_val')
#checkpoints (For Epochs)
#The CheckpointManagers can be called to serializae the weights within TRUNET
checkpoint_path_epoch = "./checkpoints/{}/epoch".format(utility.model_name_mkr(m_params,t_params=self.t_params, htuning=m_params.get('htuning',False) ))
os.makedirs(checkpoint_path_epoch,exist_ok=True)
with self.strategy.scope():
ckpt_epoch = tf.train.Checkpoint(model=self.model, optimizer=self.optimizer)
self.ckpt_mngr_epoch = tf.train.CheckpointManager(ckpt_epoch, checkpoint_path_epoch, max_to_keep=self.t_params['checkpoints_to_keep'], keep_checkpoint_every_n_hours=None)
#restoring last checkpoint if it exists
if self.ckpt_mngr_epoch.latest_checkpoint:
# compat: Initializing model and optimizer before restoring from checkpoint
try:
ckpt_epoch.restore(self.ckpt_mngr_epoch.latest_checkpoint).assert_consumed()
except AssertionError as e:
ckpt_epoch.restore(self.ckpt_mngr_epoch.latest_checkpoint)
print (' Restoring model from best checkpoint')
else:
print (' Initializing model from scratch')
#Tensorboard
os.makedirs("log_tensboard/{}".format(utility.model_name_mkr(m_params, t_params=self.t_params, htuning=self.m_params.get('htuning',False) )), exist_ok=True )
#self.writer = tf.summary.create_file_writer( "log_tensboard/{}".format(utility.model_name_mkr(m_params,t_params=self.t_params, htuning=self.m_params.get('htuning',False) ) ) )
# endregion
# region ---- Making Datasets
#caching dataset to file post pre-processing steps have been completed
cache_suffix = utility.cache_suffix_mkr( m_params, self.t_params )
os.makedirs( './Data/data_cache/', exist_ok=True )
_ds_train_val, _ = era5_eobs.load_data_era5eobs( self.t_params['train_batches'] + self.t_params['val_batches'] , self.t_params['start_date'], self.t_params['parallel_calls'] )
ds_train = _ds_train_val.take(self.t_params['train_batches'] )
ds_val = _ds_train_val.skip(self.t_params['train_batches'] ).take(self.t_params['val_batches'])
#TODO: undo cache
ds_train = ds_train.cache('Data/data_cache/train'+cache_suffix )
ds_val = ds_val.cache('Data/data_cache/val'+cache_suffix )
ds_train = ds_train.unbatch().shuffle( self.t_params['batch_size']*int(self.t_params['train_batches']/5), reshuffle_each_iteration=True).batch(self.t_params['batch_size']) #.repeat(self.t_params['epochs']-self.start_epoch)
ds_train_val = ds_train.concatenate(ds_val)
ds_train_val = ds_train_val.repeat(self.t_params.get('epochs',100)-self.start_epoch)
self.ds_train_val = self.strategy.experimental_distribute_dataset(dataset=ds_train_val)
self.iter_train_val = enumerate(self.ds_train_val)
bc_ds_in_train = int( self.t_params['train_batches']/era5_eobs.loc_count ) #batch_count
bc_ds_in_val = int( self.t_params['val_batches']/era5_eobs.loc_count )
self.reset_idxs_training = np.cumsum( [bc_ds_in_train]*era5_eobs.loc_count )
self.reset_idxs_validation = np.cumsum( [bc_ds_in_val]*era5_eobs.loc_count )
# endregion
def train_model(self):
"""During training we produce a prediction for a (n by n) square patch.
But we caculate losses on a central (h, w) region within the (n by n) patch
This central region is defined by "bounds" below
"""
bounds = cl.central_region_bounds(self.m_params['region_grid_params']) #list [ lower_h_bound[0], upper_h_bound[0], lower_w_bound[1], upper_w_bound[1] ]
#Training for n epochs
#self.t_params['train_batches'] = self.t_params['train_batches'] if self.m_params['time_sequential'] else int(self.t_params['train_batches']*self.t_params['lookback_target'] )
#self.t_params['val_batches'] = self.t_params['val_batches'] if self.m_params['time_sequential'] else int(self.t_params['val_batches']*self.t_params['lookback_target'] )
for epoch in range(self.start_epoch, int(self.t_params['epochs']) ):
#region resetting metrics, losses, records, timers
self.loss_agg_batch.reset_states()
self.loss_agg_epoch.reset_states()
self.mse_agg_epoch.reset_states()
self.loss_agg_val.reset_states()
self.mse_agg_val.reset_states()
self.df_training_info = self.df_training_info.append( { 'Epoch':epoch, 'Last_Trained_Batch':0 }, ignore_index=True )
start_epoch_train = time.time()
start_batch_group_time = time.time()
batch=0
print("\n\nStarting EPOCH {}".format(epoch ))
#endregion
# --- Training Loops
for batch in range(self.batches_to_skip+1,self.t_params['train_batches'] +1):
# get next set of training datums
idx, (feature, target, mask) = next(self.iter_train_val)
gradients = self.distributed_train_step( feature, target, mask, bounds, 0.0 )
#print(gradients)
# reporting
if( batch % self.train_batch_report_freq==0 or batch == self.t_params['train_batches']):
batch_group_time = time.time() - start_batch_group_time
est_completion_time_seconds = (batch_group_time/self.t_params['reporting_freq']) * (1 - batch/self.t_params['train_batches'])
est_completion_time_mins = est_completion_time_seconds/60
print("\t\tBatch:{}/{}\tTrain Loss: {:.8f} \t Batch Time:{:.4f}\tEpoch mins left:{:.1f}".format(batch, self.t_params['train_batches'], self.loss_agg_batch.result(), batch_group_time, est_completion_time_mins ) )
# resetting time and losses
start_batch_group_time = time.time()
# Updating record of the last batch to be operated on in training epoch
self.df_training_info.loc[ ( self.df_training_info['Epoch']==epoch) , ['Last_Trained_Batch'] ] = batch
self.df_training_info.to_csv( path_or_buf="checkpoints/{}/checkpoint_scores.csv".format(utility.model_name_mkr(self.m_params,t_params=self.t_params, htuning=m_params.get('htuning',False) )), header=True, index=False )
li_losses = [self.loss_agg_batch.result()]
li_names = ['train_loss_batch']
step = batch + (epoch)*self.t_params['train_batches']
#utility.tensorboard_record( self.writer.as_default(), li_losses, li_names, step, gradients, self.model.trainable_variables )
#utility.tensorboard_record( self.writer.as_default(), li_losses, li_names, step, None, None )
self.loss_agg_batch.reset_states()
if batch in self.reset_idxs_training:
self.model.reset_states()
# --- Tensorboard record
li_losses = [self.loss_agg_epoch.result(), self.mse_agg_epoch.result()]
li_names = ['train_loss_epoch','train_mse_epoch']
#utility.tensorboard_record( self.writer.as_default(), li_losses, li_names, epoch)
print("\tStarting Validation")
start_batch_group_time = time.time()
# --- Validation Loops
for batch in range(1, self.t_params['val_batches']+1):
# next datum
idx, (feature, target, mask) = next(self.iter_train_val)
bool_cmpltd = self.distributed_val_step(feature, target, mask, bounds)
# Reporting for validation
if batch % self.val_batch_report_freq == 0 or batch==self.t_params['val_batches'] :
batch_group_time = time.time() - start_batch_group_time
est_completion_time_seconds = (batch_group_time/self.t_params['reporting_freq']) * (1 - batch/self.t_params['val_batches'])
est_completion_time_mins = est_completion_time_seconds/60
print("\t\tCompleted Validation Batch:{}/{} \t Time:{:.4f} \tEst Time Left:{:.1f}".format( batch, self.t_params['val_batches'], batch_group_time, est_completion_time_mins))
start_batch_group_time = time.time()
if batch in self.reset_idxs_validation:
self.model.reset_states()
# region - End of Epoch Reporting and Early iteration Callback
print("\tEpoch:{}\t Train Loss:{:.8f}\t Train MSE:{:.5f}\t Val Loss:{:.5f}\t Val MSE:{:.5f}\t Time:{:.5f}".format(epoch, self.loss_agg_epoch.result(), self.mse_agg_epoch.result(),
self.loss_agg_val.result(), self.mse_agg_val.result() ,time.time()-start_epoch_train ) )
#utility.tensorboard_record( self.writer.as_default(), [self.loss_agg_val.result(), self.mse_agg_val.result()], ['Validation Loss', 'Validation MSE' ], epoch )
self.df_training_info = utility.update_checkpoints_epoch(self.df_training_info, epoch, self.loss_agg_epoch, self.loss_agg_val, self.ckpt_mngr_epoch, self.t_params,
self.m_params, self.mse_agg_epoch ,self.mse_agg_val, self.t_params['objective'] )
# Early Stop Callback
if epoch > ( max( self.df_training_info.loc[:, 'Epoch'], default=0 ) + self.t_params['early_stopping_period']) :
print("Model Stopping Early at EPOCH {}".format(epoch))
print(self.df_training_info)
break
# endregion
print("Model Training Finished")
def train_step(self, feature, target, mask, bounds, _init):
if _init==1.0:
if self.m_params['time_sequential'] == True:
inp_shape = [self.t_params['batch_size'], self.t_params['lookback_feature']] + self.m_params['region_grid_params']['outer_box_dims'] + [len(self.t_params['vars_for_feature'])]
else:
inp_shape = [self.t_params['batch_size'] ] + self.m_params['region_grid_params']['outer_box_dims'] + [ int(self.t_params['lookback_feature']*len(self.t_params['vars_for_feature'])) ]
_ = self.model( tf.zeros( inp_shape, dtype=tf.float16), self.t_params['trainable'] ) #( bs, tar_seq_len, h, w)
gradients = [ tf.zeros_like(t_var, dtype=tf.float32 ) for t_var in self.model.trainable_variables ]
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
return [0]
with tf.GradientTape(persistent=False) as tape:
# non conditional continuous training
if self.m_params['model_type_settings']['discrete_continuous'] == False:
#making predictions
preds = self.model( feature, self.t_params['trainable'] ) #( bs, tar_seq_len, h, w)
preds = tf.squeeze( preds,axis=[-1] )
preds = cl.extract_central_region(preds, bounds)
mask = cl.extract_central_region(mask, bounds)
target = cl.extract_central_region(target, bounds)
#Applying mask
preds_masked = tf.boolean_mask( preds, mask )
target_masked = tf.boolean_mask( target, mask )
# reversing standardization
preds_masked = utility.standardize_ati( preds_masked, self.t_params['normalization_shift']['rain'], self.t_params['normalization_scales']['rain'], reverse=True)
# getting losses for records and/or optimizer
metric_mse = cl.mse(target_masked, preds_masked)
loss_to_optimize = metric_mse
# conditional continuous training
elif self.m_params['model_type_settings']['discrete_continuous'] == True:
# Producing predictions - conditional rain value and prob of rain
preds = self.model( feature, self.t_params['trainable'] ) # ( bs, seq_len, h, w, 1)
preds = tf.squeeze(preds, axis=[-1])
preds, probs = tf.unstack(preds, axis=0)
# extracting the central region of interest
preds = cl.extract_central_region(preds, bounds)
probs = cl.extract_central_region(probs, bounds)
mask = cl.extract_central_region(mask, bounds)
target = cl.extract_central_region(target, bounds)
# applying mask to predicted values
preds_masked = tf.boolean_mask(preds, mask )
probs_masked = tf.boolean_mask(probs, mask )
target_masked = tf.boolean_mask(target, mask )
# Reverising standardization of predictions
preds_masked = utility.standardize_ati( preds_masked, self.t_params['normalization_shift']['rain'],
self.t_params['normalization_scales']['rain'], reverse=True)
# Getting true labels and predicted labels for whether or not it rained [ 1 if if did rain, 0 if it did not rain]
labels_true = tf.where( target_masked > 0.0, 1.0, 0.0 )
labels_pred = probs_masked
all_count = tf.size( labels_true, out_type=tf.int64 )
# region Calculating Losses and Metrics
metric_mse = cl.mse( target_masked, cl.cond_rain(preds_masked, probs_masked, threshold=0.5) )
# To calculate metric_mse for CC model we assume that pred_rain=0 if pred_prob<=0.5
# CC Normal loss
loss_to_optimize = 0
loss_to_optimize += cl.mse( target_masked, preds_masked, all_count )
loss_to_optimize += tf.reduce_mean( tf.keras.backend.binary_crossentropy(labels_true, labels_pred, from_logits=False) )
# endregion
loss_to_optimize_agg = tf.grad_pass_through( lambda x: x/self.strategy_gpu_count )(loss_to_optimize)
scaled_loss = self.optimizer.get_scaled_loss( loss_to_optimize_agg )
scaled_gradients = tape.gradient( scaled_loss, self.model.trainable_variables )
unscaled_gradients = self.optimizer.get_unscaled_gradients(scaled_gradients)
gradients, _ = tf.clip_by_global_norm( unscaled_gradients, clip_norm=self.m_params['clip_norm'] ) #gradient clipping
self.optimizer.apply_gradients( zip(gradients, self.model.trainable_variables))
# Metrics (batchwise, epoch)
self.loss_agg_batch( loss_to_optimize )
self.loss_agg_epoch( loss_to_optimize )
self.mse_agg_epoch( metric_mse )
val = cl.rNmse(target_masked, preds_masked, 10.0)
return gradients
def val_step(self, feature, target, mask, bounds):
# Non CC distribution
if self.m_params['model_type_settings']['discrete_continuous'] == False:
# Get predictions
preds = self.model(feature, False )
preds = tf.squeeze(preds)
# Extracting central region for evaluation
preds = cl.extract_central_region(preds, bounds)
mask = cl.extract_central_region(mask, bounds)
target = cl.extract_central_region(target, bounds)
# Applying masks to predictions
preds_masked = tf.boolean_mask( preds, mask )
target_masked = tf.boolean_mask( target, mask )
preds_masked = utility.standardize_ati( preds_masked, self.t_params['normalization_shift']['rain'],
self.t_params['normalization_scales']['rain'], reverse=True)
# Updating losses
mse = cl.mse( target_masked , preds_masked )
loss = mse
# CC distribution
elif self.m_params['model_type_settings']['discrete_continuous'] == True:
# Get predictions
preds = self.model(feature, training=False )
preds = tf.squeeze(preds,axis=[-1])
preds, probs = tf.unstack(preds, axis=0)
# Extracting central region for evaluation
preds = cl.extract_central_region(preds, bounds)
probs = cl.extract_central_region(probs, bounds)
mask = cl.extract_central_region(mask, bounds)
target = cl.extract_central_region(target,bounds)
# Applying masks to predictions
preds_masked = tf.boolean_mask( preds, mask )
probs_masked = tf.boolean_mask( probs, mask)
target_masked = tf.boolean_mask( target, mask )
preds_masked = utility.standardize_ati( preds_masked, self.t_params['normalization_shift']['rain'],
self.t_params['normalization_scales']['rain'], reverse=True)
# Getting classification labels for whether or not it rained
labels_true = tf.where( target_masked > 0.0, 1.0, 0.0 )
labels_pred = probs_masked
all_count = tf.size( labels_true, out_type=tf.int64 )
# calculating seperate mse for reporting
# This mse metric assumes that if probability of rain is predicted below 0.5, the rain value is 0
mse = cl.mse( target_masked, cl.cond_rain( preds_masked, probs_masked, threshold=0.5) )
# Calculating cross entropy loss
loss = tf.reduce_mean( tf.keras.backend.binary_crossentropy( labels_true, labels_pred, from_logits=False) )
# Calculating conditinal continuous loss
loss += cl.mse( target_masked, preds_masked, all_count )
self.loss_agg_val(loss)
self.mse_agg_val(mse)
return True
@tf.function
def distributed_train_step(self, feature, target, mask, bounds, _init):
gradients = self.strategy.run( self.train_step, args=(feature, target, mask, bounds, _init) )
return gradients
@tf.function
def distributed_val_step(self, feature, target, mask, bounds):
bool_completed = self.strategy.run( self.val_step, args=(feature, target, mask, bounds))
return bool_completed
if __name__ == "__main__":
s_dir = utility.get_script_directory(sys.argv[0])
args_dict = utility.parse_arguments(s_dir)
# get training and model params
t_params, m_params = utility.load_params(args_dict)
# Initialize and train model
weather_model = WeatherModel(t_params, m_params)
weather_model.initialize_scheme_era5Eobs()
weather_model.train_model()