-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpredict_ifs.py
360 lines (274 loc) · 15.4 KB
/
predict_ifs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import netCDF4
from netCDF4 import Dataset, num2date
import data_generators
import argparse
import ast
import datetime as dt
import os
import pickle
import warnings
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
import numpy as np
import pandas as pd
warnings.filterwarnings("ignore")
"""Example of how to use
For Evaluation of IFS predictive scores between the periods 1987-10-20 till 1989-11-20, for the single points representing region Cardiff and London:
python3 evaluate.py -dd "./Data" -sd "1987-10-20" -ed "1989-11-20" -lo ["Cardiff","London"] -mth 3
For Evaluation of IFS predictive scores between the periods 1987-10-20 till 1989-11-20, for the regions representing region Cardiff and London:
python3 evaluate.py -dd "./Data" -sd "1987-10-20" -ed "1989-11-20" -lo ["Cardiff","London"] -reg True
For Evaluation of IFS predictive scores between the periods 1988-10-20 till 2000-11-20, for the whole UK:
python3 evaluate.py -dd "./Data" -sd "1988-10-20" -ed "2000-11-20" -lo ["All"] -mth 3 -reg "False"
For infomration on the True rainfall statistics for London between the periods 2008-01-20 till 2015-11-20
python3 evaluate.py -dd "./Data" -sd "2008-01-20" -ed "2015-11-20" -lo ["London"] -mth 3 -rfs True -reg True
-This returns information such as Average Rainfall, Percentage of R10 Events and Average rainfall given an R10 event occurs.
"""
def main(date_start_str, date_end_str, location, data_dir="./", rain_fall_stats=False, region=False ):
"""
:str date_start: start evaluation date as a string in the following format YYYY-MM-DD
:str date_end: end evaluation date as a string in the following format YYYY-MM-DD
:str location: Location to evaluate, pass "All to evaluate whole country
:bool rain_fall_stats: boolean indicating whether to return statistics explaining the true rainfall of a region
"""
date_start = np.datetime64(date_start_str,'D')
date_end = np.datetime64(date_end_str,'D')
#Extract the IFS Predictions for a given location and time range
ifs_preds = ifs_pred_extractor(data_dir, date_start, date_end, location, region )
#Extract the True rainfall for a given location and time range
true_rain, rain_mask = true_rain_extractor( data_dir, date_start, date_end, location, region )
#Model fields extractor
mf = model_field_extractor(data_dir, date_start, date_end, location, region )
#Creating a list of the epoch timestamps relating to the days we study. i.e. if we tested from 1978-01-20 till 2000-03-01
# this would be a list such as [254102400 ,......, 951868800]
date_tss = pd.date_range( end=date_end, start=date_start, freq='D',normalize=True)
timestamp_epochs = list ( (date_tss - pd.Timestamp("1970-01-01") ) // pd.Timedelta('1s') )
#Inserting nans in masked values
true_rain = np.where(rain_mask, true_rain, np.nan )
ifs_preds = np.where(rain_mask, ifs_preds, np.nan )
#Save the extracted IFS prediction, true rainfall for optional Visualization using Evaluation.ipynb
preds = ifs_preds
true_rain = true_rain
f_dir = "./Output/ERA5/preds/"
fn = "{}_{}_{}".format(location, date_start_str, date_end_str)
if region ==True:
fn+= "regional"
fn += "_pred.dat"
fp = f_dir+fn
if not os.path.isdir(f_dir):
os.makedirs( f_dir, exist_ok=True )
pickle.dump( [np.array(timestamp_epochs), np.array(ifs_preds,dtype=np.float64) , np.array(true_rain) ],
open(fp,"wb") )
#Version that also saves associated model field data
f_dir1 = "./Output/ERA5/preds_w_mf/"
fn1 = "{}_{}_{}".format(location, date_start_str, date_end_str)
if region ==True:
fn1+= "regional"
fn1 += "_pred.dat"
fp1 = f_dir1+fn1
if not os.path.isdir(f_dir1):
os.makedirs( f_dir1, exist_ok=True )
_dat = [np.array(timestamp_epochs), np.array(ifs_preds,dtype=np.float64) , np.array(true_rain), mf ]
_dat = {
'timestamps':np.array(timestamp_epochs),
'ERA5':np.array(ifs_preds,dtype=np.float64),
'true_rain':np.array(true_rain),
'model_field':mf
}
pickle.dump( _dat , open(fp1,"wb") )
#Create a Plot of IFS predictions against True Rain values, for a quick check if I have aligned the IFS prediction and True rain correctly
if location != "All" and region==False:
plot_ifs_preds( ifs_preds, true_rain, date_start, date_end, data_dir, location )
# Masking out data which is either invalid or does not represent land (e.g. the sea)
true_rain = np.float64( true_rain[rain_mask] )
ifs_preds = np.float64( ifs_preds[rain_mask] )
# Option to output simply the rainfall statistics of an area or to evaluate IFS predictions on this area
if rain_fall_stats == False:
#IFS predictive performance metrics
rmse = rmse_aggregate( ifs_preds, true_rain )
r10_rmse = r10rmse_aggregate(ifs_preds, true_rain )
_dataframe = pd.DataFrame( {'RMSE':[rmse],"R10_RMSE":[r10_rmse] } )
#Saved scores to file in scores sub-directory
f_dir = "./Output/ERA5/scores"
#if not os.path.isdir(f_dir):
os.makedirs( f_dir, exist_ok=True )
fn = "{}_{}till{}_scores.csv".format(location,date_start_str, date_end_str)
fp = f_dir+"/"+fn
_dataframe.to_csv( fp, index=False)
print(_dataframe)
else:
#Rainfall statistics of an area.
avg_precip = np.nanmean(true_rain)
days_r10 = np.size(true_rain[true_rain>=10]) / np.size(true_rain)
avg_precip_r10 = np.nanmean( true_rain[true_rain>=10] )
_dataframe = pd.DataFrame( { 'Avg_precip':[avg_precip], 'days_r10':[days_r10*100], "Avg_precip_r10":[avg_precip_r10] })
print(_dataframe)
return True
def ifs_pred_extractor( data_dir, target_start_date, target_end_date, location="London", region=False, return_daterange=True ):
"""
This method extracts the IFS data from file. And performs any grouping/preproc neccesary.
"""
ifs_fn = data_dir + "/ifs_rainfall_preds_1979-2020.grib"
str_start_date = "1979-01-02"
str_end_date = '2019-12-31'
ifs_start_date = np.datetime64(str_start_date,'D') #IFS preds starts from 1979-01-02
ifs_end_date = np.datetime64(str_end_date,'D')
if target_end_date >ifs_end_date or target_start_date < ifs_start_date:
#rejects user request for results outside of relevant time span
raise ValueError(f"Invalid Datespan, please stick within range: {str_start_date} to {str_end_date}")
#Extracting and reshapping and IFS Data
ifs_preds_24hr = pickle.load( open(ifs_fn,"rb"))
ifs_preds_24hr = ifs_preds_24hr[:, 2:-2, 2:-2]
#Calculating start and end index at which to slice the IFS data.
cut_idx_s = np.timedelta64( target_start_date - ifs_start_date, 'D' ).astype(int)
cut_idx_e = np.timedelta64( target_end_date - ifs_start_date, 'D' ).astype(int) + 1
ifs_preds_24hr = ifs_preds_24hr[cut_idx_s:cut_idx_e]
#Scaling the IFS data to match that of the true precip observations
ifs_preds_24hr = ifs_preds_24hr * 1000
#If a location is passed, this extracts the single point ,representing a city, from the 100,140 map
ifs_preds_24hr = data_craft(ifs_preds_24hr, location, region)
if return_daterange:
return ifs_preds_24hr, pd.date_range(target_start_date, end=target_end_date, freq='D' ).astype('int64')//1e9
return ifs_preds_24hr
def true_rain_extractor(data_dir, target_start_date, target_end_date, location, region):
# Valid Date Check
rain_start_date = np.datetime64('1979-01-01','D')
rain_end_date = np.datetime64('2019-08-01','D')
if target_end_date >=rain_end_date or target_start_date < rain_start_date:
raise ValueError("Invalid Datespan, please stick within range: {rain_start_date} to {rain_end_date}")
#Extracting from NETCDF4 file
fn_rain_Mar = data_dir+ "/Rain_Data_Mar20/rr_ens_mean_0.1deg_reg_v20.0e_197901-201907_uk.nc"
dataset_rain = Dataset( fn_rain_Mar,'r', format="NETCDF4")
data_rain = dataset_rain.variables['rr'][:]
#Selecting Only relevant time period
cut_idx_s = np.timedelta64( target_start_date - rain_start_date, 'D' ).astype(int)
cut_idx_e = np.timedelta64( target_end_date - rain_start_date, 'D' ).astype(int) + 1
data_rain = data_rain[cut_idx_s:cut_idx_e, :, :]
#Aligning Data. The rain data is essential upside down
data_rain = data_rain[:, ::-1, :]
#Selecting location of interest
data_rain = data_craft( data_rain, location, region)
#Selecting the rain_mask and actual rain_data
rain_mask = np.logical_not( np.ma.getmask(data_rain) )
data_rain = np.ma.getdata( data_rain )
return data_rain, rain_mask
def model_field_extractor(data_dir,target_start_date, target_end_date, location, region ):
# Valid Date Check
feature_start_date = np.datetime64('1970-01-01') + np.timedelta64(78888, 'h')
feature_end_date = np.datetime64( feature_start_date + np.timedelta64(59900, '6h'), 'D')
if target_end_date >=feature_end_date or target_start_date < feature_start_date:
raise ValueError("Invalid Datespan, please stick within range: {feature_end_date} to {feature_start_date}")
#Instatiating model field data generator
fn_mf = os.path.join(data_dir,'Rain_Data_Mar20',"ana_input_intrp_linear.nc")
vars_for_feature = ['unknown_local_param_137_128', 'unknown_local_param_133_128', 'air_temperature', 'geopotential', 'x_wind', 'y_wind' ]
all_at_once = True
seq_len = np.timedelta64( target_end_date - target_start_date, '6h' ).astype(int)
mf_data_gen = data_generators.Generator_mf(fp=fn_mf, vars_for_feature=vars_for_feature,
all_at_once=all_at_once, seq_len=seq_len )
#Extracting dta
mf_data_gen.start_idx = np.timedelta64(target_start_date - feature_start_date,'6h').astype(int)
mf_data_gen.end_idx = np.timedelta64(target_end_date - feature_start_date,'6h').astype(int) + 4
mf_data = mf_data_gen()
#Cropping spatial bounds of data t
mf_array = data_craft(mf_data, location, region, mf=True)
return mf_array
def data_craft( data, location, region=False, mf=False ):
# location of cities/regions of interest
city_latlon = {
"London": [51.5074, -0.1278],
"Cardiff": [51.4816 + 0.15, -3.1791 -0.05], #1st Rainiest
"Glasgow": [55.8642, -4.2518], #3rd rainiest
"Lancaster":[54.466, -2.8007], #2nd hieghest
"Bradford": [53.7960, -1.7594], #3rd highest
"Manchester":[53.4808, -2.2426], #15th rainiest
"Birmingham":[52.4862, -1.8904], #25th
"Liverpool":[53.4084 , -2.9916 +0.1 ], #18th rainiest
"Leeds":[ 53.8008, -1.5491 ], #8th
"Edinburgh": [55.9533, -3.1883],
"Belfast": [54.5973, -5.9301], #25
"Dublin": [53.3498, -6.2603],
"LakeDistrict":[54.4500,-3.100],
"Newry":[54.1751, -6.3402],
"Preston":[53.7632, -2.7031 ],
"Truro":[50.2632, -5.0510],
"Bangor":[54.2274 - 0, -4.1293 - 0.3],
"Plymouth":[50.3755 + 0.1, -4.1427],
"Norwich": [52.6309, 1.2974],
"StDavids":[51.8812+0.05, -5.2660+0.05] ,
"Swansea":[51.6214+0.05,-3.9436],
"Lisburn":[54.5162,-6.058],
"Salford":[53.4875, -2.2901],
"Aberdeen":[57.1497,-2.0943-0.05],
"Stirling":[56.1165, -3.9369],
"Hull":[53.7676+0.05, 0.3274]
}
#Selects the closest grid point to the location of the city
if location in city_latlon.keys():
latitude_array = np.linspace(58.95,49.05, 100)
longitude_array = np.linspace(-10.95, 2.95, 140)
coordinates = city_latlon[location]
latitude_index = np.abs(latitude_array - coordinates[0]).argmin()
longitude_index = np.abs(longitude_array - coordinates[1]).argmin()
if region==False and mf==False:
data = data[:,latitude_index, longitude_index]
if region==False and mf==True:
slice_lat = slice(latitude_index,latitude_index+1)
slice_lon = slice(longitude_index,longitude_index+1)
data = data.isel(latitude=slice_lat,longitude=slice_lon)
data = data.to_array()
data = data.transpose('time','latitude','longitude','variable').values
elif region == True and mf==False:
data = data[:,latitude_index-2:latitude_index+2, longitude_index-2:longitude_index+2].astype(np.float64)
elif region == True and mf==True:
slice_lat = slice(latitude_index-8,latitude_index+8)
slice_lon = slice(longitude_index-8,longitude_index+8)
data = data.isel(latitude=slice_lat,longitude=slice_lon)
data = data.to_array()
data = data.transpose('time','latitude','longitude','variable').values
elif location == "All":
pass
else:
raise ValueError("Invalid Location")
return data
def plot_ifs_preds( ifs_preds, true_val, date_start, date_end, data_dir,loc):
""""
Creates a plot of IFS preds against rain precipitation
"""
ts_formated = [ d.strftime("%d-%m-%y") for d in pd.date_range(start=date_start, end=date_end, freq='D' ) ]
start = pd.to_datetime( date_start)
end = pd.to_datetime( date_end + np.timedelta64(1,'D') )
ts = mdates.drange(start,end,dt.timedelta(days=1))
fig, (ax) = plt.subplots(1)
ax.plot(ts, true_val,color='black',linewidth=1)
ax.plot(ts, ifs_preds.reshape([-1]), color='blue')
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
ax.xaxis.set_major_locator(mdates.AutoDateLocator(maxticks=20) )
img_dir = "./Output/ERA5/preds/Illustrations"
fn_name = "{}_{}_{}.png".format(loc,ts_formated[0], ts_formated [-1])
if not os.path.exists(img_dir):
os.makedirs(img_dir)
plt.savefig(img_dir+"/"+fn_name )
def rmse_aggregate( preds_mean, true_vals):
return np.sqrt( np.square(np.subtract(preds_mean, true_vals)).mean() )
def r10rmse_aggregate(preds_mean ,true_vals, N=10):
""" Returns the RN rmse, by default N = 10"""
mask_r10 = true_vals >= N
if np.count_nonzero(mask_r10) == 0:
return np.NaN
preds_filt = preds_mean[mask_r10]
true_vals_filtr = true_vals[mask_r10]
return np.sqrt(np.mean((preds_filt-true_vals_filtr)**2))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Receive input params")
parser.add_argument('-dd','--data_dir', type=str, help='the directory for the Data', required=False, default="./Data/")
parser.add_argument('-sd','--date_start_str', type=str, required=True)
parser.add_argument('-reg','--region', type=eval, required=False, default='True', choices=[True,False])
parser.add_argument('-ed','--date_end_str', type=str, required=False, default='2019-07-31')
parser.add_argument('-lo','--location', type=str, required=True, default="['London']", help="List of locations to evaluation on")
parser.add_argument('-rfs','--rain_fall_stats', type=bool, required=False, default=False, help="Pass True to return statistics on the true rainfall of an for the areas of interest")
args_dict = vars(parser.parse_args() )
li_loc = ast.literal_eval( args_dict.pop('location') )
for loc in li_loc:
print(f"Evaluating {loc}")
main( location=loc, **args_dict )
print("\n")