-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
423 lines (333 loc) · 22 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import unittest
import numpy as np
import torch
import xarray as xr
# import and set up the typeguard
from typeguard.importhook import install_import_hook
install_import_hook('src.nn')
install_import_hook('src.scoring_rules')
install_import_hook('src.utils')
install_import_hook('src.weatherbench_utils')
install_import_hook('src.unet_utils')
from src.scoring_rules import EnergyScore, KernelScore, \
VariogramScore, SumScoringRules, PatchedScoringRule
from src.nn import createFCNN, ConditionalGenerativeModel, createGenerativeFCNN, LayerNormMine
from src.utils import estimate_bandwidth_timeseries
from src.parsers import allowed_base_measures
from src.weatherbench_utils import WeatherBenchDataset
class EnergyScoreTests(unittest.TestCase):
def setUp(self):
self.rng = np.random.RandomState(2)
self.forecast = self.rng.randn(2, 5, 3).astype("float32")
self.verification = self.rng.randn(2, 3).astype("float32")
self.forecast_torch = torch.from_numpy(self.forecast)
self.verification_torch = torch.from_numpy(self.verification)
self.sr = EnergyScore(beta=1.7)
self.sr_no_mean = EnergyScore(beta=1.7, mean=False)
def test_numpy_torch_match(self):
# you can test their accordance only in case of 1 single observation (ie batch element) due to the
# different way they are computed
numpy_value = self.sr.score(self.verification[0].reshape(1, -1), self.forecast[0])
torch_value = self.sr.estimate_score_batch(self.forecast_torch[0].reshape(1, 5, 3),
self.verification_torch[0].reshape(1, -1))
self.assertTrue(np.allclose(torch_value.numpy(), numpy_value))
def test_additive_batch_torch(self):
score_1 = self.sr.estimate_score_batch(self.forecast_torch[0].reshape(1, 5, 3),
self.verification_torch[0].reshape(1, -1))
score_2 = self.sr.estimate_score_batch(self.forecast_torch[1].reshape(1, 5, 3),
self.verification_torch[1].reshape(1, -1))
score_joint = self.sr.estimate_score_batch(self.forecast_torch, self.verification_torch)
self.assertTrue(torch.allclose(score_joint, (score_2 + score_1) / 2))
def test_mean(self):
score_mean = self.sr.estimate_score_batch(self.forecast_torch, self.verification_torch)
score_no_mean = self.sr_no_mean.estimate_score_batch(self.forecast_torch, self.verification_torch)
self.assertTrue(torch.allclose(score_mean * 2, score_no_mean))
class KernelScoreTests(unittest.TestCase):
def setUp(self):
self.rng = np.random.RandomState(3)
self.forecast = self.rng.randn(2, 5, 3).astype("float32")
self.verification = self.rng.randn(2, 3).astype("float32")
self.forecast_torch = torch.from_numpy(self.forecast)
self.verification_torch = torch.from_numpy(self.verification)
self.sr_unbiased_numpy_gaussian = KernelScore(torch=False, sigma=1.5)
self.sr_biased_numpy_gaussian = KernelScore(biased_estimator=True, torch=False, sigma=1.5)
self.sr_unbiased_torch_gaussian = KernelScore(sigma=1.5)
self.sr_biased_torch_gaussian = KernelScore(biased_estimator=True, sigma=1.5)
self.sr_unbiased_numpy_rational_quadratic = KernelScore(torch=False, kernel="rational_quadratic", alpha=0.3)
self.sr_biased_numpy_rational_quadratic = KernelScore(biased_estimator=True, torch=False,
kernel="rational_quadratic", alpha=0.3)
self.sr_unbiased_torch_rational_quadratic = KernelScore(kernel="rational_quadratic", alpha=0.3)
self.sr_biased_torch_rational_quadratic = KernelScore(biased_estimator=True, kernel="rational_quadratic",
alpha=0.3)
self.sr_unbiased_torch_gaussian_no_mean = KernelScore(sigma=1.5, mean=False)
def def_negative_Euclidean_distance(beta=1.0):
if beta <= 0 or beta > 2:
raise RuntimeError("'beta' not in the right range (0,2]")
if beta == 1:
def Euclidean_distance(x, y):
return - torch.norm(x - y)
else:
def Euclidean_distance(x, y):
return - torch.norm(x - y) ** beta
return Euclidean_distance
self.sr_unbiased_torch_kernel_energy = KernelScore(kernel=def_negative_Euclidean_distance(beta=1.4))
self.sr_energy_torch = EnergyScore(beta=1.4)
def test_numpy_torch_match(self):
# you can test their accordance only in case of 1 single observation (ie batch element) due to the
# different way they are computed
# unbiased:
numpy_value = self.sr_unbiased_numpy_gaussian.score(self.verification[0].reshape(1, -1), self.forecast[0])
torch_value = self.sr_unbiased_torch_gaussian.estimate_score_batch(self.forecast_torch[0].reshape(1, 5, 3),
self.verification_torch[0].reshape(1, -1))
self.assertTrue(np.allclose(torch_value.numpy(), numpy_value))
# biased:
numpy_value = self.sr_biased_numpy_gaussian.score(self.verification[0].reshape(1, -1), self.forecast[0])
torch_value = self.sr_biased_torch_gaussian.estimate_score_batch(self.forecast_torch[0].reshape(1, 5, 3),
self.verification_torch[0].reshape(1,
-1))
self.assertTrue(np.allclose(torch_value.numpy(), numpy_value))
# unbiased:
numpy_value = self.sr_unbiased_numpy_rational_quadratic.score(self.verification[0].reshape(1, -1),
self.forecast[0])
torch_value = self.sr_unbiased_torch_rational_quadratic.estimate_score_batch(
self.forecast_torch[0].reshape(1, 5, 3), self.verification_torch[0].reshape(1, -1))
self.assertTrue(np.allclose(torch_value.numpy(), numpy_value))
# biased:
numpy_value = self.sr_biased_numpy_rational_quadratic.score(self.verification[0].reshape(1, -1),
self.forecast[0])
torch_value = self.sr_biased_torch_rational_quadratic.estimate_score_batch(
self.forecast_torch[0].reshape(1, 5, 3), self.verification_torch[0].reshape(1, -1))
self.assertTrue(np.allclose(torch_value.numpy(), numpy_value))
def test_additive_batch_torch(self):
# unbiased:
score_1 = self.sr_unbiased_torch_gaussian.estimate_score_batch(self.forecast_torch[0].reshape(1, 5, 3),
self.verification_torch[0].reshape(1, -1))
score_2 = self.sr_unbiased_torch_gaussian.estimate_score_batch(self.forecast_torch[1].reshape(1, 5, 3),
self.verification_torch[1].reshape(1, -1))
score_joint = self.sr_unbiased_torch_gaussian.estimate_score_batch(self.forecast_torch, self.verification_torch)
self.assertTrue(torch.allclose(score_joint, (score_2 + score_1) / 2))
# biased:
score_1 = self.sr_biased_torch_gaussian.estimate_score_batch(self.forecast_torch[0].reshape(1, 5, 3),
self.verification_torch[0].reshape(1, -1))
score_2 = self.sr_biased_torch_gaussian.estimate_score_batch(self.forecast_torch[1].reshape(1, 5, 3),
self.verification_torch[1].reshape(1, -1))
score_joint = self.sr_biased_torch_gaussian.estimate_score_batch(self.forecast_torch, self.verification_torch)
self.assertTrue(torch.allclose(score_joint, (score_2 + score_1) / 2))
# unbiased:
score_1 = self.sr_unbiased_torch_rational_quadratic.estimate_score_batch(
self.forecast_torch[0].reshape(1, 5, 3), self.verification_torch[0].reshape(1, -1))
score_2 = self.sr_unbiased_torch_rational_quadratic.estimate_score_batch(
self.forecast_torch[1].reshape(1, 5, 3), self.verification_torch[1].reshape(1, -1))
score_joint = self.sr_unbiased_torch_rational_quadratic.estimate_score_batch(self.forecast_torch,
self.verification_torch)
self.assertTrue(torch.allclose(score_joint, (score_2 + score_1) / 2))
# biased:
score_1 = self.sr_biased_torch_rational_quadratic.estimate_score_batch(self.forecast_torch[0].reshape(1, 5, 3),
self.verification_torch[0].reshape(1,
-1))
score_2 = self.sr_biased_torch_rational_quadratic.estimate_score_batch(self.forecast_torch[1].reshape(1, 5, 3),
self.verification_torch[1].reshape(1,
-1))
score_joint = self.sr_biased_torch_rational_quadratic.estimate_score_batch(self.forecast_torch,
self.verification_torch)
self.assertTrue(torch.allclose(score_joint, (score_2 + score_1) / 2))
# hand defined kernel:
score_1 = self.sr_unbiased_torch_kernel_energy.estimate_score_batch(self.forecast_torch[0].reshape(1, 5, 3),
self.verification_torch[0].reshape(1, -1))
score_2 = self.sr_unbiased_torch_kernel_energy.estimate_score_batch(self.forecast_torch[1].reshape(1, 5, 3),
self.verification_torch[1].reshape(1, -1))
score_joint = self.sr_unbiased_torch_kernel_energy.estimate_score_batch(self.forecast_torch,
self.verification_torch)
self.assertTrue(torch.allclose(score_joint, (score_2 + score_1) / 2))
def test_match_energy_score(self):
score_1 = self.sr_unbiased_torch_kernel_energy.estimate_score_batch(self.forecast_torch,
self.verification_torch)
score_2 = self.sr_energy_torch.estimate_score_batch(self.forecast_torch, self.verification_torch)
self.assertTrue(torch.allclose(score_2, score_1))
def test_mean(self):
score_mean = self.sr_unbiased_torch_gaussian.estimate_score_batch(self.forecast_torch, self.verification_torch)
score_no_mean = self.sr_unbiased_torch_gaussian_no_mean.estimate_score_batch(self.forecast_torch,
self.verification_torch)
self.assertTrue(torch.allclose(score_mean * 2, score_no_mean))
class VariogramScoreTests(unittest.TestCase):
def setUp(self):
self.rng = np.random.RandomState(3)
self.forecast = torch.from_numpy(self.rng.randn(7, 5, 3).astype("float32"))
self.verification = torch.from_numpy(self.rng.randn(7, 3).astype("float32"))
variogram = torch.from_numpy(self.rng.uniform(0, 1, (3, 3)).astype("float32"))
self.sr = VariogramScore(p=1.3, variogram=variogram)
self.sr_no_mean = VariogramScore(p=1.3, variogram=variogram, mean=False)
self.sr_max_batch_size = VariogramScore(p=1.3, variogram=variogram, max_batch_size=3)
def test(self):
self.sr.estimate_score_batch(self.forecast, self.verification)
def test_additive(self):
score_1 = self.sr.estimate_score_batch(self.forecast[0].reshape(1, 5, 3), self.verification[0].reshape(1, -1))
score_2 = self.sr.estimate_score_batch(self.forecast[1].reshape(1, 5, 3), self.verification[1].reshape(1, -1))
score_joint = self.sr.estimate_score_batch(self.forecast[0:2], self.verification[0:2])
self.assertTrue(torch.allclose(score_joint, (score_2 + score_1) / 2))
def test_mean(self):
score_mean = self.sr.estimate_score_batch(self.forecast, self.verification)
score_no_mean = self.sr_no_mean.estimate_score_batch(self.forecast, self.verification)
self.assertTrue(torch.allclose(score_mean * 7, score_no_mean))
def test_max_batch_size(self):
score_mean = self.sr.estimate_score_batch(self.forecast, self.verification)
score_max_batch_size = self.sr_max_batch_size.estimate_score_batch(self.forecast, self.verification)
self.assertTrue(torch.allclose(score_mean, score_max_batch_size))
class SumScoringRulesTests(unittest.TestCase):
def setUp(self):
self.rng = np.random.RandomState(3)
self.forecast = torch.from_numpy(self.rng.randn(20, 50, 3).astype("float32"))
self.verification = torch.from_numpy(self.rng.randn(20, 3).astype("float32"))
variogram = torch.from_numpy(self.rng.uniform(0, 1, (3, 3)).astype("float32"))
self.variogram_sr = VariogramScore(p=1.3, variogram=variogram)
self.energy_sr = EnergyScore(beta=1.7)
self.energy_sr_2 = EnergyScore(beta=1.3)
self.weights = (1.0, 2.0, 3.0)
self.sum_sr = SumScoringRules((self.energy_sr, self.variogram_sr, self.energy_sr_2), self.weights)
def test(self):
total_sr_val = self.sum_sr.estimate_score_batch(self.forecast, self.verification)
var_sr_val = self.variogram_sr.estimate_score_batch(self.forecast, self.verification)
eng_sr_val = self.energy_sr.estimate_score_batch(self.forecast, self.verification)
eng_sr2_val = self.energy_sr_2.estimate_score_batch(self.forecast, self.verification)
self.assertTrue(torch.allclose(
total_sr_val, self.weights[0] * eng_sr_val + self.weights[1] * var_sr_val + self.weights[2] * eng_sr2_val))
def test_additive(self):
score_1 = self.sum_sr.estimate_score_batch(self.forecast[0].reshape(1, 50, 3),
self.verification[0].reshape(1, -1))
score_2 = self.sum_sr.estimate_score_batch(self.forecast[1].reshape(1, 50, 3),
self.verification[1].reshape(1, -1))
score_joint = self.sum_sr.estimate_score_batch(self.forecast[0:2], self.verification[0:2])
self.assertTrue(torch.allclose(score_joint, score_2 + score_1))
class PatchedScoringRuleTests(unittest.TestCase):
def setUp(self):
self.rng = np.random.RandomState(3)
self.forecast = torch.from_numpy(self.rng.randn(2, 5, 3).astype("float32"))
self.verification = torch.from_numpy(self.rng.randn(2, 3).astype("float32"))
self.energy_sr = EnergyScore(beta=1.7)
self.masks = torch.from_numpy(self.rng.randint(2, size=(5, 3), dtype=bool))
self.patched_sr = PatchedScoringRule(self.energy_sr, self.masks)
self.nn = createFCNN(3, 3)()
def test(self):
total_sr_val = self.patched_sr.estimate_score_batch(self.forecast, self.verification)
sr_tot = 0
for i in range(self.masks.shape[0]):
sr_tot += self.energy_sr.estimate_score_batch(self.forecast[:, :, self.masks[i]],
self.verification[:, self.masks[i]])
self.assertTrue(torch.allclose(total_sr_val, sr_tot))
def test_additive(self):
score_1 = self.patched_sr.estimate_score_batch(self.forecast[0].reshape(1, 5, 3),
self.verification[0].reshape(1, -1))
score_2 = self.patched_sr.estimate_score_batch(self.forecast[1].reshape(1, 5, 3),
self.verification[1].reshape(1, -1))
score_joint = self.patched_sr.estimate_score_batch(self.forecast, self.verification)
self.assertTrue(torch.allclose(score_joint, score_2 + score_1))
def test_autograd(self):
# autograd still works even with the masking
nn_output = self.nn(self.forecast) # just a way to get a nn output of the correct size
score = self.patched_sr.estimate_score_batch(nn_output, self.verification)
score.backward()
class FCNNTests(unittest.TestCase):
"""Tests whether it gives same output with 2d and 3d tensors"""
def setUp(self):
self.net = createFCNN(5, 2, nonlinearity=torch.nn.Softplus())()
self.tensor_2d = torch.randn((12, 5), requires_grad=True)
self.tensor_3d = self.tensor_2d.reshape(3, 4, 5)
def test(self):
out_2d = self.net(self.tensor_2d)
out_3d = self.net(self.tensor_3d)
self.assertTrue(torch.allclose(out_2d.reshape(3, 4, -1), out_3d, rtol=0, atol=0))
self.assertTrue(torch.allclose(out_2d, out_3d.reshape(12, -1), rtol=0, atol=0))
class GenerativeFCNNTests(unittest.TestCase):
"""Tests whether it gives same output with 2d and 3d tensors"""
def setUp(self):
batch_size = 3
auxiliary_var_size = 5
window_size = 2
data_size = 5
input_size = window_size * data_size + auxiliary_var_size
self.net = createGenerativeFCNN(input_size, 2, nonlinearity=torch.nn.Softplus())()
self.tensor_3d = torch.randn((batch_size, window_size, data_size))
self.z = torch.randn((batch_size, 6, auxiliary_var_size))
def test(self):
out_3d = self.net(self.tensor_3d, self.z)
class ConditionalGenerativeModelTests(unittest.TestCase):
def setUp(self):
self.auxiliary_var_size = 5
window_size = 2
self.data_size = 5
self.input_size = window_size * self.data_size + self.auxiliary_var_size
self.tensor_3d = torch.randn((3, window_size, self.data_size))
def test(self):
for measure in allowed_base_measures:
self.net = ConditionalGenerativeModel(
createGenerativeFCNN(self.input_size, self.data_size, nonlinearity=torch.nn.Softplus())(),
size_auxiliary_variable=self.auxiliary_var_size, number_generations_per_forward_call=6,
base_measure=measure)
self.net(self.tensor_3d)
class EstimateBandwidthTests(unittest.TestCase):
"""Tests whether it gives same output with 2d and 3d tensors"""
def setUp(self):
self.rng = np.random.RandomState(3)
self.timeseries = torch.from_numpy(self.rng.randn(20, 30).astype("float32"))
def test(self):
estimate_bandwidth_timeseries(self.timeseries)
class WeatherBenchDatasetTests(unittest.TestCase):
"""This works only if the WeatherBench dataset is on the computer in the correct folder"""
def setUp(self):
folder = "/" # todo add folder where you stored the Weatherbench data!
z500 = xr.open_mfdataset(folder + 'geopotential_500/*.nc', combine='by_coords')
var_dict = {'z': None}
observation_window = 3
lead_time = 10
self.dataset_hourly_load = WeatherBenchDataset(z500.sel(time=slice('1981', '1981')), var_dict, lead_time,
observation_window, daily=False)
self.dataset_hourly_noload = WeatherBenchDataset(z500.sel(time=slice('1981', '1981')), var_dict, lead_time,
observation_window, load=False, daily=False)
self.dataset_daily_load = WeatherBenchDataset(z500.sel(time=slice('1981', '1981')), var_dict, lead_time,
observation_window)
self.dataset_daily_noload = WeatherBenchDataset(z500.sel(time=slice('1981', '1981')), var_dict, lead_time,
observation_window, load=False)
def test_same_load_noload(self):
x_noload, y_noload = self.dataset_hourly_noload[1]
x, y = self.dataset_hourly_load[1]
self.assertTrue(torch.all(x == x_noload))
self.assertTrue(torch.all(y == y_noload))
x_noload, y_noload = self.dataset_daily_noload[1]
x, y = self.dataset_daily_load[1]
self.assertTrue(torch.all(x == x_noload))
self.assertTrue(torch.all(y == y_noload))
def test_same_index_timestring(self):
timestring = "1981-12-01T12:00:00.000000000"
x_time, y_time = self.dataset_hourly_load.select_time(timestring)
x, y = self.dataset_hourly_load[8016]
assert torch.all(x == x_time)
assert torch.all(y == torch.from_numpy(y_time.values))
x_time, y_time = self.dataset_hourly_noload.select_time(timestring)
x, y = self.dataset_hourly_noload[8016]
assert torch.all(x == x_time)
assert torch.all(y == torch.from_numpy(y_time.values))
x_time, y_time = self.dataset_daily_load.select_time(timestring)
x, y = self.dataset_daily_load[322]
assert torch.all(x == x_time)
assert torch.all(y == torch.from_numpy(y_time.values))
x_time, y_time = self.dataset_daily_noload.select_time(timestring)
x, y = self.dataset_daily_noload[322]
assert torch.all(x == x_time)
assert torch.all(y == torch.from_numpy(y_time.values))
class LayerNormMineTests(unittest.TestCase):
"""This works only if the WeatherBench dataset is on the computer in the correct folder"""
def setUp(self):
self.layer_norm_mine = LayerNormMine()
N1, C1, H1, W1 = 20, 5, 10, 10
self.input1 = torch.randn(N1, C1, H1, W1)
self.layer_norm_1 = torch.nn.LayerNorm([C1, H1, W1], elementwise_affine=False)
N2, C2, H2, W2 = 20, 6, 20, 20
self.input2 = torch.randn(N2, C2, H2, W2)
self.layer_norm_2 = torch.nn.LayerNorm([C2, H2, W2], elementwise_affine=False)
def test_same(self):
out_mine_1 = self.layer_norm_mine(self.input1)
out_mine_2 = self.layer_norm_mine(self.input2)
out1 = self.layer_norm_1(self.input1)
out2 = self.layer_norm_2(self.input2)
self.assertTrue(torch.allclose(out_mine_1, out1))
self.assertTrue(torch.allclose(out_mine_2, out2))