-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_lorenz63.sh
executable file
·40 lines (31 loc) · 2.05 KB
/
run_lorenz63.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/bin/bash
# This scripts shows how to reproduce experiments for Lorenz63 model.
# create folders:
mkdir results
mkdir results/lorenz
mkdir results/lorenz/datasets
# generate the training data:
python3 generate_data.py lorenz --window_size 10 --n_steps 20000
# RUN things:
# --- Deterministic ---
# run the training script
python3 train_nn.py lorenz regression --lr 0.001 --epochs 1000 --seed 12 --batch_size 1000 --hidden_size_rnn 8
# compute performance metrics and produce individual figures
python3 predict_test_plot.py lorenz regression --lr 0.001 --seed 12 --batch_size 1000 --hidden_size_rnn 8
# --- SRs ---
# run the training script for Energy Score:
python3 train_nn.py lorenz SR --scoring_rule Energy --lr 0.01 --epochs 1000 --ensemble_size 10 --seed 12 --batch_size 1000 --hidden_size_rnn 8
# compute performance metrics and produce individual figures
python3 predict_test_plot.py lorenz SR --scoring_rule Energy --lr 0.01 --training_ensemble_size 10 --prediction_ensemble_size 200 --seed 12 --batch_size 1000 --hidden_size_rnn 8
# --- GANs ---
# run the training script for GAN:
python3 train_nn.py lorenz GAN --lr 0.0001 --lr_c 0.001 --epochs 1000 --seed 12 --batch_size 1000 --hidden_size_rnn 8
# compute performance metrics and produce individual figures
python3 predict_test_plot.py lorenz GAN --lr 0.0001 --lr_c 0.001 --prediction_ensemble_size 200 --seed 12 --hidden_size_rnn 8 --batch_size 1000
# run the training script for WGAN-GP:
python3 train_nn.py lorenz WGAN_GP --lr 0.0003 --lr_c 0.03 --epochs 1000 --seed 12 --batch_size 1000 --hidden_size_rnn 8 --critic_steps 5
# compute performance metrics and produce individual figures
python3 predict_test_plot.py lorenz WGAN_GP --lr 0.0003 --lr_c 0.03 --prediction_ensemble_size 200 --seed 12 --batch_size 1000 --hidden_size_rnn 8 --critic_steps 5
# run python3 train_nn.py -h to see all possible arguments; similar for predict_test_plot.py
# Create the comparison figure (Figure 2a in the paper)
python predict_test_plot_comparison.py lorenz SR --training_ensemble_size 10 --prediction_ensemble_size 1000