-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
76 lines (54 loc) · 1.85 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from flask import Flask, jsonify
import pronouncing
import random
import rearrange
import os
import re
#import lyrics.sample as lyrics_sample
#import music
import tflearn
import tensorflow as tf
from tflearn.data_utils import *
app = Flask(__name__)
m_lyrics = None
maxlen = 20
path = 'lyrics/kanye_verses.txt'
@app.route("/")
def hello():
return "Hello World!"
@app.route("/lyrics")
def lyrics():
seed = random_sequence_from_textfile(path, maxlen)
lyrics = m_lyrics.generate(600, temperature=0.7, seq_seed=seed)
lyrics = rearrange.rearrange_text(lyrics)
return jsonify(lyrics=lyrics)
def load_lyrics_model():
path = "lyrics/kanye_verses.txt"
maxlen = 20
tf.reset_default_graph()
if not os.path.isfile(path):
print("No Input")
exit()
string_utf8 = open(path, "rU").read()
string_utf8 = re.sub(r'[^\x00-\x7F]+', ' ', string_utf8)
X, Y, char_idx = \
string_to_semi_redundant_sequences(string_utf8, seq_maxlen=maxlen, redun_step=3)
g = tflearn.input_data(shape=[None, maxlen, len(char_idx)])
g = tflearn.lstm(g, 512, return_seq=True)
g = tflearn.dropout(g, 0.5)
g = tflearn.lstm(g, 512, return_seq=True)
g = tflearn.dropout(g, 0.5)
g = tflearn.lstm(g, 512)
g = tflearn.dropout(g, 0.5)
g = tflearn.fully_connected(g, len(char_idx), activation='softmax')
g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy',
learning_rate=0.001)
m = tflearn.SequenceGenerator(g, dictionary=char_idx,
seq_maxlen=maxlen,
clip_gradients=5.0,
checkpoint_path='checkpoints/deeprap')
m.load("lyrics/save/deeprap.tflearn")
return m
if __name__ == "__main__":
m_lyrics = load_lyrics_model()
app.run(host='0.0.0.0', port=8000)