-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathXor Equality.cpp
73 lines (55 loc) · 1.92 KB
/
Xor Equality.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/*
Solution by Rahul Surana
***********************************************************
For a given N, find the number of ways to choose an integer x from the range [0,2N−1]
such that x⊕(x+1)=(x+2)⊕(x+3), where ⊕ denotes the bitwise XOR operator.
Since the number of valid x can be large, output it modulo 109+7.
Input
The first line contains an integer T, the number of test cases. Then the test cases follow.
The only line of each test case contains a single integer N.
Output
For each test case, output in a single line the answer to the problem modulo 10^9+7
***********************************************************
*/
#include <bits/stdc++.h>
#define ll long long
#define vl vector<ll>
#define vi vector<int>
#define pi pair<int,int>
#define pl pair<ll,ll>
#define all(a) a.begin(),a.end()
#define mem(a,x) memset(a,x,sizeof(a))
#define pb push_back
#define mp make_pair
#define F first
#define S second
#define FOR(i,a) for(int i = 0; i < a; i++)
#define trace(x) cerr<<#x<<" : "<<x<<endl;
#define trace2(x,y) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<endl;
#define trace3(x,y,z) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<" | "<<#z<<" : "<<z<<endl;
#define fast_io std::ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
#define MOD 1000000007
using namespace std;
ll pow(ll x,ll a){
ll res = 1;
a--;
while(a>0){
if(a&1) res = ((x%MOD) * (res%MOD))%MOD;
x=((x%MOD) * (x%MOD))%MOD ;
a = a >> 1;
}
return res%MOD;
}
int main()
{
fast_io;
int t;
cin >> t;
while(t--) {
ll f;
cin >> f;
// cout << (16^15)<<" "<< (18^17) <<"\n";
// FOR(i,100) cout <<i << " ^ " << i+1 << " " << (i^(i+1))<< "\n";
cout << pow((ll)2,f) <<"\n";
}
}