-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathAppy and Contest.cpp
74 lines (52 loc) · 2.05 KB
/
Appy and Contest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
/*
Solution by Rahul Surana
***********************************************************
Zack is a tailor by profession. He is famous for making square-shaped beautifully-cut and sewed handkerchieves.
The customers demand large-sized handkerchieves. So, now Zack is determined to get the maximum size out of the cloth.
He has a rectangular piece of cloth of length 'L' and breadth 'B'.
His task is to divide it into 'N' square-shaped cloth pieces each of side length ‘S’.
So he can make handkerchieves out of them of the maximum size.
Input:
The first line of the input contains T- the number of test cases. T lines follow. Each line of the test case contains L followed by B.
Output:
S -the maximum length of each square-shaped handkerchief.
***********************************************************
*/
#include <bits/stdc++.h>
#define ll unsigned long long int
#define vl vector<ll>
#define vi vector<int>
#define pi pair<int,int>
#define pl pair<ll,ll>
#define all(a) a.begin(),a.end()
#define mem(a,x) memset(a,x,sizeof(a))
#define pb push_back
#define mp make_pair
#define F first
#define S second
#define FOR(i,a) for(int i = 0; i < a; i++)
#define trace(x) cerr<<#x<<" : "<<x<<endl;
#define trace2(x,y) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<endl;
#define trace3(x,y,z) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<" | "<<#z<<" : "<<z<<endl;
#define fast_io std::ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
#define MOD 1000000007
using namespace std;
ll gcd(ll a, ll b){
if(b==0) return a;
return gcd(b,a%b);
}
int main()
{
fast_io;
int t;
cin >> t;
while(t--) {
ll n,a,k,b;
cin >> n >> a >> b >> k;
ll lcm = (a*b)/gcd(a,b);
ll da = (n/a) - (n/lcm), db = (n/b) - (n/lcm);
// cout << da << " " << db << "\n";
if( da+db >= k) cout << "Win\n";
else cout << "Lose\n";
}
}