-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathppo_step.py
39 lines (33 loc) · 1.59 KB
/
ppo_step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/usr/bin/env python
# Created at 2020/1/22
import tensorflow as tf
@tf.function
def ppo_step(policy_net, value_net, optimizer_policy, optimizer_value, optim_value_iternum, states, actions,
returns, advantages, old_log_probs, clip_epsilon, entropy_coeff=1e-3):
"""update critic"""
critic_loss_fn = tf.keras.losses.MeanSquaredError()
for _ in range(optim_value_iternum):
with tf.GradientTape() as tape:
values_pred = value_net(states)
value_loss = critic_loss_fn(returns, y_pred=values_pred)
grads = tape.gradient(value_loss, value_net.trainable_variables)
optimizer_value.apply_gradients(
grads_and_vars=zip(grads, value_net.trainable_variables))
"""update policy"""
with tf.GradientTape() as tape:
log_probs = tf.expand_dims(policy_net.get_log_prob(states, actions), axis=-1)
ratio = tf.exp(log_probs - old_log_probs)
surr1 = ratio * advantages
surr2 = tf.clip_by_value(
ratio, 1.0 - clip_epsilon, 1.0 + clip_epsilon) * advantages
entropy = tf.reduce_mean(policy_net.get_entropy(states))
policy_loss = - tf.reduce_mean(tf.minimum(surr1, surr2)) - entropy_coeff * entropy
grads = tape.gradient(policy_loss, policy_net.trainable_variables)
# grads, grad_norm = tf.clip_by_global_norm(grads, 40)
optimizer_policy.apply_gradients(
grads_and_vars=zip(grads, policy_net.trainable_variables))
return {"ratio": ratio,
"critic_loss": value_loss,
"policy_loss": policy_loss,
"policy_entropy": entropy
}