-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathsac_step.py
63 lines (51 loc) · 2.05 KB
/
sac_step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
# Created at 2020/3/25
import torch
import torch.nn as nn
from Utils.torch_util import get_flat_params, set_flat_params
def sac_step(policy_net, value_net, value_net_target, q_net_1, q_net_2, optimizer_policy, optimizer_value,
optimizer_q_net_1, optimizer_q_net_2, states, actions, rewards, next_states, masks, gamma, polyak,
update_target=False):
rewards = rewards.unsqueeze(-1)
masks = masks.unsqueeze(-1)
"""update qvalue net"""
q_value_1 = q_net_1(states, actions)
q_value_2 = q_net_2(states, actions)
with torch.no_grad():
target_next_value = rewards + gamma * \
masks * value_net_target(next_states)
q_value_loss_1 = nn.MSELoss()(q_value_1, target_next_value)
optimizer_q_net_1.zero_grad()
q_value_loss_1.backward()
optimizer_q_net_1.step()
q_value_loss_2 = nn.MSELoss()(q_value_2, target_next_value)
optimizer_q_net_2.zero_grad()
q_value_loss_2.backward()
optimizer_q_net_2.step()
"""update policy net"""
new_actions, log_probs = policy_net.rsample(states)
min_q = torch.min(
q_net_1(states, new_actions),
q_net_2(states, new_actions)
)
policy_loss = (log_probs - min_q).mean()
optimizer_policy.zero_grad()
policy_loss.backward()
optimizer_policy.step()
"""update value net"""
target_value = (min_q - log_probs).detach()
value_loss = nn.MSELoss()(value_net(states), target_value)
optimizer_value.zero_grad()
value_loss.backward()
optimizer_value.step()
if update_target:
""" update target value net """
value_net_target_flat_params = get_flat_params(value_net_target)
value_net_flat_params = get_flat_params(value_net)
set_flat_params(value_net_target,
(1 - polyak) * value_net_flat_params + polyak * value_net_target_flat_params)
return {"target_value_loss": value_loss,
"q_value_loss_1": q_value_loss_1,
"q_value_loss_2": q_value_loss_2,
"policy_loss": policy_loss
}