-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze.py
188 lines (157 loc) · 6.51 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import numpy as np
import pandas as pd
import glob
import warnings
import itertools
import time
import collections
# keras items
from keras.models import load_model
# local items
from scan import Scan
from config import results_dir, temp_dir, data_fp, os_data_fp, data_dir, X_cols
from utils import DataPrep, DataPrepWrapper
# sklearn items
from sklearn.metrics import roc_auc_score, roc_curve, auc, precision_recall_curve, \
average_precision_score, f1_score, log_loss
from imblearn.metrics import geometric_mean_score
# read the 'Mei_NN_*.csv' file
# load weights of the best model based on a specific metric
# - return the model with lowest loss_val
# - return the model with lowest Diff_#_D60_val
# use which test dataset
# - that from current 1m dataset
# - that from extra source
# class Analyze(object):
# def __init__(self, vintage, round_no, target_metric, best_k, index):
# self.vintage = vintage
# self.round_no = round_no
# self.target_metric = target_metric
# self.best_k = best_k
# self.index = index
#
# def set_X_test(self):
# # retrieve test dataset
# self.X_test = np.load(f'{temp_dir}\\X_test_{yr}.pkl')
#
# def set_y_test(self):
# self.y_test = np.load(f'{temp_dir}\\y_test_{yr}.pkl')
#
# def set_y_prob(self):
# self.y_prob = np.load(f'{temp_dir}\\y_prob_{yr}.pkl')
def select_best_model(round_no=None, based_on='Loss_val', index=None, best_k=1):
""" Select best model based on the given metric
:param round_no:
:param based_on:
:return:
"""
if round_no is None:
warnings.warn('round_no has to be specified')
return
round_dir = os.path.join(results_dir, f'Mei_NN_{round_no}')
round_fp = os.path.join(round_dir, f'Mei_NN_{round_no}.csv')
if based_on is 'index':
return load_model(glob.glob(f'{round_dir}\\{index}_*')[0]), index
# read the 'Mei_NN_*.csv' file
res = pd.read_csv(round_fp)
# search for file name of the best model based on a specific metric
if based_on in ['Loss_val', 'Diff_D60_val']:
params_idx = res.loc[:, ['Index', based_on]].sort_values(by=based_on)['Index'][:best_k].values
elif based_on in ['PR_AUC_val', 'ROC_AUC_val', 'F_score_val', 'G_mean_val']:
params_idx = res.loc[:, ['Index', based_on]].sort_values(by=based_on)['Index'][:best_k].values
else:
warnings.warn(f'Cannot select the best model based on {based_on}')
models = []
for idx in params_idx:
best_model_fp = glob.glob(f'{round_dir}\\{idx}_*')[0]
best_model = load_model(best_model_fp)
models.append(best_model)
return models, params_idx
def calc_metrics_radar(y_true, y_prob):
# calculate the metrics for prediction probabilities from RaDaR
vfunc = np.vectorize(lambda x: 1 if x > 0.05 else 0)
y_pred = vfunc(y_prob).ravel()
precision, recall, _ = precision_recall_curve(y_true, y_prob)
fpr, tpr, _ = roc_curve(y_true, y_prob)
roc_auc = auc(fpr, tpr)
pr_auc = average_precision_score(y_true, y_prob)
exp_pos = np.sum(y_prob)
f_score = f1_score(y_true, y_pred)
g_mean = geometric_mean_score(y_true, y_pred)
loss = log_loss(y_true, y_prob)
metrics = {'Loss': loss,
'PR_AUC': pr_auc,
'ROC_AUC': roc_auc,
'F_score': f_score,
'G_mean': g_mean,
'Expeted_#_D60': exp_pos,
'Actual_#_D60': np.sum(y_true),
'Diff_D60': abs(np.sum(y_true) - exp_pos),
'Ratio_D60': np.sum(y_true) / exp_pos,
}
return metrics
if __name__ == "__main__":
# get model
round_no = 22
target_metric = 'Loss_val'
best_k = 5
index = None
stacking = True
models, idx = select_best_model(round_no=round_no, based_on=target_metric, index=index, best_k=best_k)
print(idx)
if not isinstance(models, collections.Iterable):
models = [models]
idx = [idx]
# collate to excel
cols = ['Vintage', 'Model', 'Index', 'Loss', 'PR_AUC', 'ROC_AUC', 'F_score', 'G_mean',
'Expeted_#_D60', 'Actual_#_D60', 'Diff_D60', 'Ratio_D60']
cmp_df = pd.DataFrame(columns=cols)
# predict
for v in range(2001, 2017):
print(v)
X_test = np.load(f'{temp_dir}\\X_test_{v}.pkl')
y_test = np.load(f'{temp_dir}\\y_test_{v}.pkl')
y_prob = np.load(f'{temp_dir}\\y_prob_{v}.pkl')
# radar metrics
metrics_ra = calc_metrics_radar(y_test, y_prob)
metrics_ra.update({'Vintage': v, 'Model': 'RaDaR', 'Index': None})
cmp_df = cmp_df.append(metrics_ra, ignore_index=True)
if stacking:
# for each model, calculate the metrics
prob = np.zeros_like(y_prob)
for model, id in zip(models, idx):
prob += np.squeeze(model.predict(X_test, batch_size=X_test.shape[0], verbose=0))
prob /= best_k
vfunc = np.vectorize(lambda x: 1 if x > 0.05 else 0)
y_pred = vfunc(prob).ravel()
# calculate performance metrics
precision, recall, _ = precision_recall_curve(y_test, prob)
fpr, tpr, _ = roc_curve(y_test, prob)
roc_auc = auc(fpr, tpr)
pr_auc = average_precision_score(y_test, prob)
exp_pos = np.sum(prob)
f_score = f1_score(y_test, y_pred)
g_mean = geometric_mean_score(y_test, y_pred)
metrics_nn = {'Loss': None,
'PR_AUC': pr_auc,
'ROC_AUC': roc_auc,
'F_score': f_score,
'G_mean': g_mean,
'Expeted_#_D60': exp_pos,
'Actual_#_D60': np.sum(y_test),
'Diff_D60': abs(np.sum(y_test) - exp_pos),
'Ratio_D60': np.sum(y_test) / exp_pos,
}
metrics_nn.update({'Vintage': v, 'Model': f'Mei_NN_{round_no}', 'Index': None})
cmp_df = cmp_df.append(metrics_nn, ignore_index=True)
else:
for model, id in zip(models, idx):
metrics_nn = Scan.model_predict(model, X_test, y_test)
metrics_nn.update({'Vintage': v, 'Model': f'Mei_NN_{round_no}', 'Index': id})
cmp_df = cmp_df.append(metrics_nn, ignore_index=True)
if stacking:
cmp_fp = os.path.join(results_dir, f'cmp_round{round_no}_{target_metric}_best{best_k}_ave.xlsx')
else:
cmp_fp = os.path.join(results_dir, f'cmp_round{round_no}_{target_metric}_index{index}.xlsx')
cmp_df.to_excel(cmp_fp)