-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsql_assistant.py
187 lines (157 loc) · 6.94 KB
/
sql_assistant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
from typing import Optional, List
from urllib.parse import quote_plus
from dotenv import load_dotenv
from sqlalchemy import create_engine, text
from langchain_openai import ChatOpenAI
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain import hub
from langchain.memory import ConversationBufferMemory
from langgraph.prebuilt import create_react_agent
class SQLAnalyzer:
def __init__(self, openai_api_key: str):
"""Initialize SQL Analyzer with necessary configurations."""
self.llm = ChatOpenAI(
model="gpt-4o-mini",
api_key=openai_api_key,
temperature=0,
presence_penalty=0.6,
frequency_penalty=0.6
)
self.setup_database_connection()
self.memory = ConversationBufferMemory(
return_messages=True,
input_key="input",
output_key="output"
)
def setup_database_connection(self):
"""Set up the initial database connection."""
username = os.getenv("DB_USER", "default_user")
password = quote_plus(os.getenv("DB_PASSWORD", "default_password"))
host = os.getenv("DB_HOST", "localhost")
self.base_connection_string = f"mysql+pymysql://{username}:{password}@{host}:3306"
try:
self.engine = create_engine(
self.base_connection_string,
pool_pre_ping=True,
pool_recycle=3600
)
self.available_databases = self.get_available_databases()
print("Database connection established successfully")
except Exception as e:
print(f"Error setting up database connection: {str(e)}")
raise
def get_available_databases(self) -> List[str]:
"""Get list of available databases excluding system databases."""
system_dbs = {'information_schema', 'mysql', 'performance_schema', 'sys'}
try:
with self.engine.connect() as conn:
result = conn.execute(text("SHOW DATABASES"))
return [row[0] for row in result if row[0] not in system_dbs]
except Exception as e:
print(f"Error fetching databases: {str(e)}")
return []
def connect_to_database(self, database_name: str) -> bool:
"""Connect to a specific database."""
if database_name not in self.available_databases:
print(f"Database '{database_name}' not found")
return False
try:
# Create new connection string with specific database
connection_string = f"{self.base_connection_string}/{database_name}"
specific_engine = create_engine(connection_string)
# Test connection
with specific_engine.connect() as conn:
conn.execute(text("SELECT 1"))
# Initialize SQLDatabase instance and toolkit
self.db = SQLDatabase(specific_engine)
self.toolkit = SQLDatabaseToolkit(db=self.db, llm=self.llm)
# Set up the agent executor with latest prompt template
prompt = hub.pull("langchain-ai/sql-agent-system-prompt")
system_message = prompt.format(dialect="MySQL", top_k=5)
self.agent_executor = create_react_agent(
self.llm,
self.toolkit.get_tools(),
state_modifier=system_message
)
print(f"Successfully connected to {database_name}")
return True
except Exception as e:
print(f"Error connecting to database: {str(e)}")
return False
async def process_query(self, query: str) -> Optional[str]:
"""Process a natural language query and return the result."""
if not query:
return None
try:
# Get conversation context
memory_vars = self.memory.load_memory_variables({"input": query})
context = memory_vars.get("history", "")
# Enhance query with context
enhanced_query = f"""
Previous context: {context}
Current query: {query}
"""
# Execute query through agent
events = self.agent_executor.stream(
{"messages": [("user", enhanced_query)]},
stream_mode="values"
)
# Process response
response = None
for event in events:
message = event["messages"][-1]
if (
hasattr(message, 'content')
and not message.content.startswith('Tool Calls:')
and not message.content.startswith('Name: ')
):
response = message.content
# Save to memory
if response:
self.memory.save_context(
{"input": query},
{"output": response}
)
return response
except Exception as e:
print(f"Error processing query: {str(e)}")
return "Error processing your query. Please try again."
async def main():
"""Main function to run the SQL Analyzer."""
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
print("Missing OpenAI API key in environment variables")
return
try:
# Initialize analyzer
analyzer = SQLAnalyzer(openai_api_key)
# Show available databases
print("\nAvailable databases:", ", ".join(analyzer.available_databases))
# Get database selection
while True:
db_name = input("\nEnter database name to connect (or 'exit' to quit): ")
if db_name.lower() == 'exit':
break
if analyzer.connect_to_database(db_name):
# Main query loop
while True:
query = input("\nEnter your query (or 'back' to change database, 'exit' to quit): ")
if query.lower() == 'exit':
return
if query.lower() == 'back':
break
response = await analyzer.process_query(query)
if response:
print("\nResponse:", response)
except KeyboardInterrupt:
print("\n\nShutting down...")
except Exception as e:
print(f"\nFatal error: {str(e)}")
finally:
print("\nGoodbye!")
if __name__ == "__main__":
import asyncio
asyncio.run(main())