@@ -141,10 +141,12 @@ column vectors.
141
141
142
142
The set of all $n$-vectors is denoted by $\mathbb R^n$.
143
143
144
- For example,
144
+ ``` {prf:example}
145
+ :label: le_ex_dim
145
146
146
147
* $\mathbb R^2$ is the plane --- the set of pairs $(x_1, x_2)$.
147
148
* $\mathbb R^3$ is 3 dimensional space --- the set of vectors $(x_1, x_2, x_3)$.
149
+ ```
148
150
149
151
Often vectors are represented visually as arrows from the origin to the point.
150
152
@@ -185,7 +187,8 @@ multiplication, which we now describe.
185
187
186
188
When we add two vectors, we add them element-by-element.
187
189
188
- For example,
190
+ ``` {prf:example}
191
+ :label: le_ex_add
189
192
190
193
$$
191
194
\begin{bmatrix}
208
211
1
209
212
\end{bmatrix}.
210
213
$$
214
+ ```
211
215
212
216
In general,
213
217
@@ -273,7 +277,8 @@ plt.show()
273
277
274
278
Scalar multiplication is an operation that multiplies a vector $x$ with a scalar elementwise.
275
279
276
- For example,
280
+ ``` {prf:example}
281
+ :label: le_ex_mul
277
282
278
283
$$
279
284
-2
292
297
14
293
298
\end{bmatrix}.
294
299
$$
300
+ ```
295
301
296
302
More generally, it takes a number $\gamma$ and a vector $x$ and produces
297
303
@@ -429,7 +435,8 @@ matrices.
429
435
430
436
Scalar multiplication and addition are generalizations of the vector case:
431
437
432
- Here is an example of scalar multiplication
438
+ ``` {prf:example}
439
+ :label: le_ex_asm
433
440
434
441
$$
435
442
3
443
450
0 & 15
444
451
\end{bmatrix}.
445
452
$$
453
+ ```
446
454
447
455
In general for a number $\gamma$ and any matrix $A$,
448
456
461
469
\end{bmatrix}.
462
470
$$
463
471
472
+ ``` {prf:example}
473
+ :label: le_ex_ma
474
+
464
475
Consider this example of matrix addition,
465
476
466
477
$$
479
490
7 & 12
480
491
\end{bmatrix}.
481
492
$$
493
+ ```
482
494
483
495
In general,
484
496
@@ -518,6 +530,9 @@ $j$-th column of $B$.
518
530
If $A$ is $n \times k$ and $B$ is $j \times m$, then to multiply $A$ and $B$
519
531
we require $k = j$, and the resulting matrix $A B$ is $n \times m$.
520
532
533
+ ``` {prf:example}
534
+ :label: le_ex_2dmul
535
+
521
536
Here's an example of a $2 \times 2$ matrix multiplied by a $2 \times 1$ vector.
522
537
523
538
$$
536
551
a_{21}x_1 + a_{22}x_2
537
552
\end{bmatrix}
538
553
$$
554
+ ```
539
555
540
556
As an important special case, consider multiplying $n \times k$
541
557
matrix $A$ and $k \times 1$ column vector $x$.
@@ -839,6 +855,8 @@ In matrix form, the system {eq}`la_se` becomes
839
855
\end{bmatrix}.
840
856
```
841
857
858
+ ``` {prf:example}
859
+ :label: le_ex_gls
842
860
For example, {eq}`n_eq_sys_la` has this form with
843
861
844
862
$$
848
866
\quad \text{and} \quad
849
867
x = p.
850
868
$$
851
-
869
+ ```
852
870
853
871
When considering problems such as {eq}` la_gf ` , we need to ask at least some of
854
872
the following questions
0 commit comments