From ca24fb1fe8cc36574a75146d6780d453a5381a0f Mon Sep 17 00:00:00 2001 From: Santosh <61618641+ssantoshp@users.noreply.github.com> Date: Sun, 23 May 2021 15:14:08 +0200 Subject: [PATCH] Update README.md --- README.md | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/README.md b/README.md index a5a8df5..9a81283 100644 --- a/README.md +++ b/README.md @@ -17,17 +17,17 @@ This repository is a collection of research notebooks and tutorials using the Qu ### Research 2 Production Notebook Series - - [Mean Reversion](https://github.com/QuantConnect/Research/blob/master/Research2Production/01%20Mean%20Reversion.ipynb) - - [Random Forest Regression](https://github.com/QuantConnect/Research/blob/master/Research2Production/02%20Random%20Forest%20Regression.ipynb) - - [Uncorrelated Assets](https://github.com/QuantConnect/Research/blob/master/Research2Production/03%20Uncorrelated%20Assets.ipynb) - - [Kalman Filters and Pairs Trading](https://github.com/QuantConnect/Research/blob/master/Research2Production/04%20Kalman%20Filters%20and%20Pairs%20Trading.ipynb) - - [Stationary Processes and Z-Scores](https://github.com/QuantConnect/Research/blob/master/Research2Production/05%20Stationary%20Processes%20and%20Z-Scores.ipynb) - - [Principal Component Analysis](https://github.com/QuantConnect/Research/blob/master/Research2Production/06%20Principal%20Component%20Analysis.ipynb) - - [Hidden Markov Models](https://github.com/QuantConnect/Research/blob/master/Research2Production/07%20Hidden%20Markov%20Models.ipynb) - - [Long Short-Term Memory](https://github.com/QuantConnect/Research/blob/master/Research2Production/08%20Long%20Short-Term%20Memory.ipynb) + - Mean Reversion [C#](https://github.com/QuantConnect/Research/blob/master/Research2Production/CSharp/01%20Mean%20Reversion%20CSharp.ipynb) | [Python](https://github.com/QuantConnect/Research/blob/master/Research2Production/Python/01%20Mean%20Reversion.ipynb) + - Random Forest Regression [Python](https://github.com/QuantConnect/Research/blob/master/Research2Production/Python/02%20Random%20Forest%20Regression.ipynb) + - Uncorrelated Assets [C#](https://github.com/QuantConnect/Research/blob/master/Research2Production/CSharp/03%20Uncorrelated%20Assets%20CSharp.ipynb) | [Python](https://github.com/QuantConnect/Research/blob/master/Research2Production/Python/03%20Uncorrelated%20Assets.ipynb) + - Kalman Filters and Pairs Trading [C#](https://github.com/QuantConnect/Research/blob/master/Research2Production/CSharp/04%20Kalman%20Filters%20and%20Pairs%20Trading%20CSharp.ipynb) | [Python](https://github.com/QuantConnect/Research/blob/master/Research2Production/Python/04%20Kalman%20Filters%20and%20Pairs%20Trading.ipynb) + - Stationary Processes and Z-Scores [C#](https://github.com/QuantConnect/Research/blob/master/Research2Production/CSharp/05%20Stationary%20Processes%20and%20Z-Scores%20CSharp.ipynb) | [Python](https://github.com/QuantConnect/Research/blob/master/Research2Production/Python/05%20Stationary%20Processes%20and%20Z-Scores.ipynb) + - Principal Component Analysis [Python](https://github.com/QuantConnect/Research/blob/master/Research2Production/Python/06%20Principle%20Compenent%20Analysis.ipynb) + - Hidden Markov Models [Python](https://github.com/QuantConnect/Research/blob/master/Research2Production/Python/07%20Hidden%20Markov%20Models.ipynb) + - Long Short-Term Memory [Python](https://github.com/QuantConnect/Research/blob/master/Research2Production/Python/08%20Long%20Short-Term%20Memory.ipynb) ### Analysis Examples - - [Fudamental Factor Analysis](https://github.com/QuantConnect/Research/blob/master/Analysis/01%20Fudamental%20Factor%20Analysis.ipynb): This research applies MorningStar fundamental data to demonstrate how to select the effective factors for long/short strategies. + - [Fudamental Factor Analysis](https://github.com/QuantConnect/Research/blob/master/Analysis/01%20Fundamental%20Factor%20Analysis.ipynb): This research applies MorningStar fundamental data to demonstrate how to select the effective factors for long/short strategies. - [Kalman Filter Based Pairs Trading](https://github.com/QuantConnect/Research/blob/master/Analysis/02%20Kalman%20Filter%20Based%20Pairs%20Trading.ipynb): This research demonstrates the basic principle of pairs trading and introduces the concepts of cointegration and Kalman Filter for pairs trading.