From be897a6aac5be0d93bec8ddabf1119e8703ee47e Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Mon, 2 Sep 2024 22:27:08 +0000 Subject: [PATCH] [pre-commit.ci] Apply automatic pre-commit fixes --- testing/jupyterlab/README.md | 1 + testing/notebooks/Lorenz.ipynb | 6 +++--- 2 files changed, 4 insertions(+), 3 deletions(-) diff --git a/testing/jupyterlab/README.md b/testing/jupyterlab/README.md index 5fa1992..0cfeb4d 100644 --- a/testing/jupyterlab/README.md +++ b/testing/jupyterlab/README.md @@ -49,6 +49,7 @@ You can run tests locally on your machine, or remotely in the cloud. 4. Once you have entered all the information, click on the **Run workflow** button. [^1]: `main` is the default branch for JupyterLab hence this is the default value for the `ref` parameter. + [^2]: This is useful if you want to test the accessibility of a package that is not part of the JupyterLab repository. See the [Testing Changes to External Pages](https://jupyterlab.readthedocs.io/en/latest/developer/contributing.html#id17) section of JupyterLab's documentation for more information. #### Inspecting the test results diff --git a/testing/notebooks/Lorenz.ipynb b/testing/notebooks/Lorenz.ipynb index 0a645bb..67f38cd 100644 --- a/testing/notebooks/Lorenz.ipynb +++ b/testing/notebooks/Lorenz.ipynb @@ -102,7 +102,7 @@ " ax.set_xlim((-25, 25))\n", " ax.set_ylim((-35, 35))\n", " ax.set_zlim((5, 55))\n", - " \n", + "\n", " def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho):\n", " \"\"\"Compute the time-derivative of a Lorenz system.\"\"\"\n", " x, y, z = x_y_z\n", @@ -116,7 +116,7 @@ " t = np.linspace(0, max_time, int(250*max_time))\n", " x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t)\n", " for x0i in x0])\n", - " \n", + "\n", " # choose a different color for each trajectory\n", " colors = plt.cm.viridis(np.linspace(0, 1, N))\n", "\n", @@ -160,7 +160,7 @@ "metadata": {}, "outputs": [], "source": [ - "w = interactive(solve_lorenz, angle=(0.,360.), max_time=(0.1, 4.0), \n", + "w = interactive(solve_lorenz, angle=(0.,360.), max_time=(0.1, 4.0),\n", " N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0))\n", "display(w)" ]