Skip to content

Commit 87824c1

Browse files
Circle CICircle CI
Circle CI
authored and
Circle CI
committed
CircleCI update of dev docs (2713).
1 parent de84f49 commit 87824c1

File tree

185 files changed

+731759
-731339
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

185 files changed

+731759
-731339
lines changed
Binary file not shown.
Binary file not shown.
-286 Bytes
Loading
-192 Bytes
Loading
-24 Bytes
Loading
Loading
-113 Bytes
Loading
Loading
-115 Bytes
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
741 Bytes
Loading
Loading
Loading
Loading
Loading
Loading
Loading
190 Bytes
Loading
-673 Bytes
Loading
Loading

master/_modules/ot/gnn/_layers.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -148,7 +148,7 @@ <h1>Source code for ot.gnn._layers</h1><div class="highlight"><pre>
148148
<span class="sd"> &quot;&quot;&quot;</span>
149149

150150
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_features</span><span class="p">,</span> <span class="n">n_tplt</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">n_tplt_nodes</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">train_node_weights</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">multi_alpha</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">feature_init_mean</span><span class="o">=</span><span class="mf">0.</span><span class="p">,</span> <span class="n">feature_init_std</span><span class="o">=</span><span class="mf">1.</span><span class="p">):</span>
151-
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
151+
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
152152
<span class="sd"> Template Fused Gromov-Wasserstein (TFGW) layer. This layer is a pooling layer for graph neural networks.</span>
153153
<span class="sd"> Computes the fused Gromov-Wasserstein distances between the graph and a set of templates.</span>
154154

@@ -281,7 +281,7 @@ <h1>Source code for ot.gnn._layers</h1><div class="highlight"><pre>
281281
<span class="sd"> &quot;&quot;&quot;</span>
282282

283283
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_features</span><span class="p">,</span> <span class="n">n_tplt</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">n_tplt_nodes</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">train_node_weights</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">feature_init_mean</span><span class="o">=</span><span class="mf">0.</span><span class="p">,</span> <span class="n">feature_init_std</span><span class="o">=</span><span class="mf">1.</span><span class="p">):</span>
284-
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
284+
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
285285
<span class="sd"> Template Wasserstein (TW) layer, also kown as OT-GNN layer. This layer is a pooling layer for graph neural networks.</span>
286286
<span class="sd"> Computes the Wasserstein distances between the features of the graph features and a set of templates.</span>
287287

master/_modules/ot/gromov/_quantized.html

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -322,7 +322,7 @@ <h1>Source code for ot.gromov._quantized</h1><div class="highlight"><pre>
322322
<a class="viewcode-back" href="../../../gen_modules/ot.gromov.html#ot.gromov.get_graph_partition">[docs]</a>
323323
<span class="k">def</span> <span class="nf">get_graph_partition</span><span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">npart</span><span class="p">,</span> <span class="n">part_method</span><span class="o">=</span><span class="s1">&#39;random&#39;</span><span class="p">,</span> <span class="n">F</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">1.</span><span class="p">,</span>
324324
<span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">nx</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
325-
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
325+
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
326326
<span class="sd"> Partitioning a given graph with structure matrix :math:`\mathbf{C} \in R^{n \times n}`</span>
327327
<span class="sd"> into `npart` partitions either &#39;random&#39;, or using one of {&#39;louvain&#39;, &#39;fluid&#39;}</span>
328328
<span class="sd"> algorithms from networkx, or &#39;spectral&#39; clustering from scikit-learn,</span>
@@ -430,7 +430,7 @@ <h1>Source code for ot.gromov._quantized</h1><div class="highlight"><pre>
430430
<div class="viewcode-block" id="get_graph_representants">
431431
<a class="viewcode-back" href="../../../gen_modules/ot.gromov.html#ot.gromov.get_graph_representants">[docs]</a>
432432
<span class="k">def</span> <span class="nf">get_graph_representants</span><span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">part</span><span class="p">,</span> <span class="n">rep_method</span><span class="o">=</span><span class="s1">&#39;pagerank&#39;</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">nx</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
433-
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
433+
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
434434
<span class="sd"> Get representative node for each partition given by :math:`\mathbf{part} \in R^{n}`</span>
435435
<span class="sd"> of a graph with structure matrix :math:`\mathbf{C} \in R^{n \times n}`.</span>
436436
<span class="sd"> Selection is either done randomly or using &#39;pagerank&#39; algorithm from networkx.</span>
@@ -506,7 +506,7 @@ <h1>Source code for ot.gromov._quantized</h1><div class="highlight"><pre>
506506
<a class="viewcode-back" href="../../../gen_modules/ot.gromov.html#ot.gromov.format_partitioned_graph">[docs]</a>
507507
<span class="k">def</span> <span class="nf">format_partitioned_graph</span><span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">p</span><span class="p">,</span> <span class="n">part</span><span class="p">,</span> <span class="n">rep_indices</span><span class="p">,</span> <span class="n">F</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">M</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
508508
<span class="n">alpha</span><span class="o">=</span><span class="mf">1.</span><span class="p">,</span> <span class="n">nx</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
509-
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
509+
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
510510
<span class="sd"> Format an attributed graph :math:`(\mathbf{C}, \mathbf{F}, \mathbf{p})`</span>
511511
<span class="sd"> with structure matrix :math:`(\mathbf{C} \in R^{n \times n}`, feature matrix</span>
512512
<span class="sd"> :math:`(\mathbf{F} \in R^{n \times d}` and node relative importance</span>
@@ -865,7 +865,7 @@ <h1>Source code for ot.gromov._quantized</h1><div class="highlight"><pre>
865865
<a class="viewcode-back" href="../../../gen_modules/ot.gromov.html#ot.gromov.get_partition_and_representants_samples">[docs]</a>
866866
<span class="k">def</span> <span class="nf">get_partition_and_representants_samples</span><span class="p">(</span>
867867
<span class="n">X</span><span class="p">,</span> <span class="n">npart</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">&#39;kmeans&#39;</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">nx</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
868-
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
868+
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
869869
<span class="sd"> Compute `npart` partitions and representants over samples :math:`\mathbf{X} \in R^{n \times d}`</span>
870870
<span class="sd"> using either a random or a kmeans algorithm.</span>
871871

@@ -961,7 +961,7 @@ <h1>Source code for ot.gromov._quantized</h1><div class="highlight"><pre>
961961
<a class="viewcode-back" href="../../../gen_modules/ot.gromov.html#ot.gromov.format_partitioned_samples">[docs]</a>
962962
<span class="k">def</span> <span class="nf">format_partitioned_samples</span><span class="p">(</span>
963963
<span class="n">X</span><span class="p">,</span> <span class="n">p</span><span class="p">,</span> <span class="n">part</span><span class="p">,</span> <span class="n">rep_indices</span><span class="p">,</span> <span class="n">F</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">1.</span><span class="p">,</span> <span class="n">nx</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
964-
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
964+
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
965965
<span class="sd"> Format an attributed graph :math:`(\mathbf{D}(\mathbf{X}), \mathbf{F}, \mathbf{p})`</span>
966966
<span class="sd"> with euclidean structure matrix :math:`(\mathbf{D}(\mathbf{X}) \in R^{n \times n}`,</span>
967967
<span class="sd"> feature matrix :math:`(\mathbf{F} \in R^{n \times d}` and node relative importance</span>

master/_sources/auto_examples/backends/plot_dual_ot_pytorch.rst.txt

Lines changed: 40 additions & 40 deletions
Original file line numberDiff line numberDiff line change
@@ -195,26 +195,26 @@ Estimating dual variables for entropic OT
195195

196196
.. code-block:: none
197197
198-
Iter: 0, loss=0.20204949002249467
199-
Iter: 10, loss=-19.60860574650993
200-
Iter: 20, loss=-31.482478746465016
201-
Iter: 30, loss=-36.175626847270706
202-
Iter: 40, loss=-39.22212045703235
203-
Iter: 50, loss=-40.61255600476051
204-
Iter: 60, loss=-41.173521857417356
205-
Iter: 70, loss=-41.380839787597345
206-
Iter: 80, loss=-41.4460443975386
207-
Iter: 90, loss=-41.48422729091434
208-
Iter: 100, loss=-41.49625400646669
209-
Iter: 110, loss=-41.50316442246139
210-
Iter: 120, loss=-41.5058921752514
211-
Iter: 130, loss=-41.50777558324456
212-
Iter: 140, loss=-41.50905893744227
213-
Iter: 150, loss=-41.50991611620446
214-
Iter: 160, loss=-41.510557684181926
215-
Iter: 170, loss=-41.5110341217496
216-
Iter: 180, loss=-41.51140167587627
217-
Iter: 190, loss=-41.51168859183621
198+
Iter: 0, loss=0.20204949002247666
199+
Iter: 10, loss=-19.52029446797639
200+
Iter: 20, loss=-31.56589317416366
201+
Iter: 30, loss=-36.44149718032852
202+
Iter: 40, loss=-39.865784184986445
203+
Iter: 50, loss=-41.75994464253616
204+
Iter: 60, loss=-42.51664938835618
205+
Iter: 70, loss=-42.85456456760184
206+
Iter: 80, loss=-42.92631997334403
207+
Iter: 90, loss=-42.97161089599306
208+
Iter: 100, loss=-42.98404519979
209+
Iter: 110, loss=-42.987862631339674
210+
Iter: 120, loss=-42.99026698249955
211+
Iter: 130, loss=-42.99142554440141
212+
Iter: 140, loss=-42.99195268362308
213+
Iter: 150, loss=-42.992328640487635
214+
Iter: 160, loss=-42.99257458826821
215+
Iter: 170, loss=-42.99276568827521
216+
Iter: 180, loss=-42.992914403589744
217+
Iter: 190, loss=-42.99303652537613
218218
219219
220220
@@ -319,25 +319,25 @@ Estimating dual variables for quadratic OT
319319
.. code-block:: none
320320
321321
Iter: 0, loss=-0.0018442196020623663
322-
Iter: 10, loss=-19.543862196129865
323-
Iter: 20, loss=-31.259747958753433
324-
Iter: 30, loss=-35.6732125884935
325-
Iter: 40, loss=-39.02711072361268
326-
Iter: 50, loss=-40.36085807634747
327-
Iter: 60, loss=-41.014144338144405
328-
Iter: 70, loss=-41.19892103529712
329-
Iter: 80, loss=-41.31973154479462
330-
Iter: 90, loss=-41.356297973746095
331-
Iter: 100, loss=-41.37305575144209
332-
Iter: 110, loss=-41.37955006947374
333-
Iter: 120, loss=-41.38380401883411
334-
Iter: 130, loss=-41.38607383837321
335-
Iter: 140, loss=-41.38752418540599
336-
Iter: 150, loss=-41.38850405120806
337-
Iter: 160, loss=-41.38922284097558
338-
Iter: 170, loss=-41.38975293469908
339-
Iter: 180, loss=-41.390142774135064
340-
Iter: 190, loss=-41.39042904145647
322+
Iter: 10, loss=-19.5218368360571
323+
Iter: 20, loss=-31.36444262698248
324+
Iter: 30, loss=-36.2653733193638
325+
Iter: 40, loss=-39.718767823729024
326+
Iter: 50, loss=-41.50474805129267
327+
Iter: 60, loss=-42.351018653800374
328+
Iter: 70, loss=-42.66655441621151
329+
Iter: 80, loss=-42.784517384616485
330+
Iter: 90, loss=-42.82632038232454
331+
Iter: 100, loss=-42.84400873392061
332+
Iter: 110, loss=-42.848647735590504
333+
Iter: 120, loss=-42.85075563083304
334+
Iter: 130, loss=-42.85153039869369
335+
Iter: 140, loss=-42.85179248312254
336+
Iter: 150, loss=-42.851919039576615
337+
Iter: 160, loss=-42.85196395244533
338+
Iter: 170, loss=-42.8519875130725
339+
Iter: 180, loss=-42.85199843808929
340+
Iter: 190, loss=-42.85200505273594
341341
342342
343343
@@ -380,7 +380,7 @@ Plot the estimated quadratic OT plan
380380
381381
.. rst-class:: sphx-glr-timing
382382

383-
**Total running time of the script:** (0 minutes 11.843 seconds)
383+
**Total running time of the script:** (0 minutes 20.121 seconds)
384384

385385

386386
.. _sphx_glr_download_auto_examples_backends_plot_dual_ot_pytorch.py:

master/_sources/auto_examples/backends/plot_optim_gromov_pytorch.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -395,14 +395,14 @@ classes
395395
Estimated weights : [0.29985821 0.18926744 0.51087435]
396396
True proportions : [0.5 0.3 0.2]
397397
398-
<matplotlib.colorbar.Colorbar object at 0x7f19e0346050>
398+
<matplotlib.colorbar.Colorbar object at 0x7f09dd383b20>
399399
400400
401401
402402
403403
.. rst-class:: sphx-glr-timing
404404

405-
**Total running time of the script:** (0 minutes 7.891 seconds)
405+
**Total running time of the script:** (0 minutes 9.053 seconds)
406406

407407

408408
.. _sphx_glr_download_auto_examples_backends_plot_optim_gromov_pytorch.py:

0 commit comments

Comments
 (0)