Skip to content

Commit 6396165

Browse files
Circle CICircle CI
authored andcommitted
CircleCI update of dev docs (3223).
1 parent 3e55e37 commit 6396165

File tree

401 files changed

+102813
-102325
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

401 files changed

+102813
-102325
lines changed

master/_downloads/006964755fe89c4eeb7c8b8016e96890/plot_otda_semi_supervised.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,9 @@
44
OTDA unsupervised vs semi-supervised setting
55
============================================
66
7+
.. note::
8+
Example added in release: 0.1.9.
9+
710
This example introduces a semi supervised domain adaptation in a 2D setting.
811
It explicit the problem of semi supervised domain adaptation and introduces
912
some optimal transport approaches to solve it.

master/_downloads/020b892b91e910d18254039df8f9f86e/plot_regpath.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,10 @@
33
================================================================
44
Regularization path of l2-penalized unbalanced optimal transport
55
================================================================
6+
7+
.. note::
8+
Example added in release: 0.8.0.
9+
610
This example illustrate the regularization path for 2D unbalanced
711
optimal transport. We present here both the fully relaxed case
812
and the semi-relaxed case.
Binary file not shown.

master/_downloads/0598d5b45ff5db99569cf59aaff1ea1a/plot_screenkhorn_1D.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,9 @@
44
Screened optimal transport (Screenkhorn)
55
========================================
66
7+
.. note::
8+
Example added in release: 0.7.0.
9+
710
This example illustrates the computation of Screenkhorn [26].
811
912
[26] Alaya M. Z., Bérar M., Gasso G., Rakotomamonjy A. (2019).

master/_downloads/059a63fc6cb655dcd2f1c9a61bb9d7ec/plot_OT_2D_samples.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@
125125
"name": "python",
126126
"nbconvert_exporter": "python",
127127
"pygments_lexer": "ipython3",
128-
"version": "3.10.17"
128+
"version": "3.10.18"
129129
}
130130
},
131131
"nbformat": 4,
Binary file not shown.
Binary file not shown.

master/_downloads/0b94278a6426d6eb1fd193bf87be12cf/plot_otda_color_images.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,9 @@
44
OT for image color adaptation
55
=============================
66
7+
.. note::
8+
Example added in release: 0.1.9.
9+
710
This example presents a way of transferring colors between two images
811
with Optimal Transport as introduced in [6]
912

master/_downloads/0e0c970a6374049b6079f4ba3f451631/plot_fgw_solvers.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"\n# Comparison of Fused Gromov-Wasserstein solvers\n\nThis example illustrates the computation of FGW for attributed graphs\nusing 4 different solvers to estimate the distance based on Conditional\nGradient [24], Sinkhorn projections [12, 51] and alternated Bregman\nprojections [63, 64].\n\nWe generate two graphs following Stochastic Block Models further endowed with\nnode features and compute their FGW matchings.\n\n[12] Gabriel Peyr\u00e9, Marco Cuturi, and Justin Solomon (2016),\n\"Gromov-Wasserstein averaging of kernel and distance matrices\".\nInternational Conference on Machine Learning (ICML).\n\n[24] Vayer Titouan, Chapel Laetitia, Flamary R\u00e9mi, Tavenard Romain\nand Courty Nicolas\n\"Optimal Transport for structured data with application on graphs\"\nInternational Conference on Machine Learning (ICML). 2019.\n\n[51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019).\n\"Gromov-wasserstein learning for graph matching and node embedding\".\nIn International Conference on Machine Learning (ICML), 2019.\n\n[63] Li, J., Tang, J., Kong, L., Liu, H., Li, J., So, A. M. C., & Blanchet, J.\n\"A Convergent Single-Loop Algorithm for Relaxation of Gromov-Wasserstein in\nGraph Data\". International Conference on Learning Representations (ICLR), 2023.\n\n[64] Ma, X., Chu, X., Wang, Y., Lin, Y., Zhao, J., Ma, L., & Zhu, W.\n\"Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications\".\nIn Thirty-seventh Conference on Neural Information Processing Systems\n(NeurIPS), 2023.\n"
7+
"\n# Comparison of Fused Gromov-Wasserstein solvers\n\n<div class=\"alert alert-info\"><h4>Note</h4><p>Example added in release: 0.9.1.</p></div>\n\nThis example illustrates the computation of FGW for attributed graphs\nusing 4 different solvers to estimate the distance based on Conditional\nGradient [24], Sinkhorn projections [12, 51] and alternated Bregman\nprojections [63, 64].\n\nWe generate two graphs following Stochastic Block Models further endowed with\nnode features and compute their FGW matchings.\n\n[12] Gabriel Peyr\u00e9, Marco Cuturi, and Justin Solomon (2016),\n\"Gromov-Wasserstein averaging of kernel and distance matrices\".\nInternational Conference on Machine Learning (ICML).\n\n[24] Vayer Titouan, Chapel Laetitia, Flamary R\u00e9mi, Tavenard Romain\nand Courty Nicolas\n\"Optimal Transport for structured data with application on graphs\"\nInternational Conference on Machine Learning (ICML). 2019.\n\n[51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019).\n\"Gromov-wasserstein learning for graph matching and node embedding\".\nIn International Conference on Machine Learning (ICML), 2019.\n\n[63] Li, J., Tang, J., Kong, L., Liu, H., Li, J., So, A. M. C., & Blanchet, J.\n\"A Convergent Single-Loop Algorithm for Relaxation of Gromov-Wasserstein in\nGraph Data\". International Conference on Learning Representations (ICLR), 2023.\n\n[64] Ma, X., Chu, X., Wang, Y., Lin, Y., Zhao, J., Ma, L., & Zhu, W.\n\"Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications\".\nIn Thirty-seventh Conference on Neural Information Processing Systems\n(NeurIPS), 2023.\n"
88
]
99
},
1010
{
@@ -89,7 +89,7 @@
8989
"name": "python",
9090
"nbconvert_exporter": "python",
9191
"pygments_lexer": "ipython3",
92-
"version": "3.10.17"
92+
"version": "3.10.18"
9393
}
9494
},
9595
"nbformat": 4,

master/_downloads/0e15d87ff8ae3d0dd037bf7ddc80d8a7/plot_variance.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"\n# Sliced Wasserstein Distance on 2D distributions\n\nThis example illustrates the computation of the sliced Wasserstein Distance as\nproposed in [31].\n\n[31] Bonneel, Nicolas, et al. \"Sliced and radon wasserstein barycenters of\nmeasures.\" Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45\n"
7+
"\n# Sliced Wasserstein Distance on 2D distributions\n\n<div class=\"alert alert-info\"><h4>Note</h4><p>Example added in release: 0.8.0.</p></div>\n\nThis example illustrates the computation of the sliced Wasserstein Distance as\nproposed in [31].\n\n[31] Bonneel, Nicolas, et al. \"Sliced and radon wasserstein barycenters of\nmeasures.\" Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45\n"
88
]
99
},
1010
{
@@ -118,7 +118,7 @@
118118
"name": "python",
119119
"nbconvert_exporter": "python",
120120
"pygments_lexer": "ipython3",
121-
"version": "3.10.17"
121+
"version": "3.10.18"
122122
}
123123
},
124124
"nbformat": 4,

0 commit comments

Comments
 (0)