-
Notifications
You must be signed in to change notification settings - Fork 516
/
Copy pathplot_GMM_flow.py
205 lines (168 loc) · 5.27 KB
/
plot_GMM_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# -*- coding: utf-8 -*-
r"""
====================================================
GMM Flow
====================================================
Illustration of the flow of a Gaussian Mixture with
respect to its GMM-OT distance with respect to a
fixed GMM.
"""
# Author: Eloi Tanguy <[email protected]>
# Remi Flamary <[email protected]>
# Julie Delon <[email protected]>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 4
import numpy as np
import matplotlib.pylab as pl
from matplotlib import colormaps as cm
import ot
import ot.plot
from ot.utils import proj_SDP, proj_simplex
from ot.gmm import gmm_ot_loss
import torch
from torch.optim import Adam
from matplotlib.patches import Ellipse
##############################################################################
# Generate data and plot it
# -------------------------
torch.manual_seed(3)
ks = 3
kt = 2
d = 2
eps = 0.1
m_s = torch.randn(ks, d)
m_s.requires_grad_()
m_t = torch.randn(kt, d)
C_s = torch.randn(ks, d, d)
C_s = torch.matmul(C_s, torch.transpose(C_s, 2, 1))
C_s += eps * torch.eye(d)[None, :, :] * torch.ones(ks, 1, 1)
C_s.requires_grad_()
C_t = torch.randn(kt, d, d)
C_t = torch.matmul(C_t, torch.transpose(C_t, 2, 1))
C_t += eps * torch.eye(d)[None, :, :] * torch.ones(kt, 1, 1)
w_s = torch.randn(ks)
w_s = proj_simplex(w_s)
w_s.requires_grad_()
w_t = torch.tensor(ot.unif(kt))
def draw_cov(mu, C, color=None, label=None, nstd=1, alpha=0.5):
def eigsorted(cov):
if torch.is_tensor(cov):
cov = cov.detach().numpy()
vals, vecs = np.linalg.eigh(cov)
order = vals.argsort()[::-1].copy()
return vals[order], vecs[:, order]
vals, vecs = eigsorted(C)
theta = np.degrees(np.arctan2(*vecs[:, 0][::-1]))
w, h = 2 * nstd * np.sqrt(vals)
ell = Ellipse(
xy=(mu[0], mu[1]),
width=w,
height=h,
alpha=alpha,
angle=theta,
facecolor=color,
edgecolor=color,
label=label,
fill=True,
)
pl.gca().add_artist(ell)
def draw_gmm(ms, Cs, ws, color=None, nstd=0.5, alpha=1):
for k in range(ms.shape[0]):
draw_cov(ms[k], Cs[k], color, None, nstd, alpha * ws[k])
axis = [-3, 3, -3, 3]
pl.figure(1, (20, 10))
pl.clf()
pl.subplot(1, 2, 1)
pl.scatter(m_s[:, 0].detach(), m_s[:, 1].detach(), color="C0")
draw_gmm(m_s.detach(), C_s.detach(), torch.softmax(w_s, 0).detach().numpy(), color="C0")
pl.axis(axis)
pl.title("Source GMM")
pl.subplot(1, 2, 2)
pl.scatter(m_t[:, 0].detach(), m_t[:, 1].detach(), color="C1")
draw_gmm(m_t.detach(), C_t.detach(), w_t.numpy(), color="C1")
pl.axis(axis)
pl.title("Target GMM")
##############################################################################
# Gradient descent loop
# ------------------------
n_gd_its = 100
lr = 3e-2
opt = Adam(
[
{"params": m_s, "lr": 2 * lr},
{"params": C_s, "lr": lr},
{"params": w_s, "lr": lr},
]
)
m_list = [m_s.data.numpy().copy()]
C_list = [C_s.data.numpy().copy()]
w_list = [torch.softmax(w_s, 0).data.numpy().copy()]
loss_list = []
for _ in range(n_gd_its):
opt.zero_grad()
loss = gmm_ot_loss(m_s, m_t, C_s, C_t, torch.softmax(w_s, 0), w_t)
loss.backward()
opt.step()
with torch.no_grad():
C_s.data = proj_SDP(C_s.data, vmin=1e-6)
m_list.append(m_s.data.numpy().copy())
C_list.append(C_s.data.numpy().copy())
w_list.append(torch.softmax(w_s, 0).data.numpy().copy())
loss_list.append(loss.item())
pl.figure(2)
pl.clf()
pl.plot(loss_list)
pl.title("Loss")
pl.xlabel("its")
pl.ylabel("loss")
##############################################################################
# Last step visualisation
# ------------------------
axis = [-3, 3, -3, 3]
pl.figure(3, (10, 10))
pl.clf()
pl.title("GMM flow, last step")
pl.scatter(m_list[0][:, 0], m_list[0][:, 1], color="C0", label="Source")
draw_gmm(m_list[0], C_list[0], w_list[0], color="C0")
pl.axis(axis)
pl.scatter(m_t[:, 0].detach(), m_t[:, 1].detach(), color="C1", label="Target")
draw_gmm(m_t.detach(), C_t.detach(), w_t.numpy(), color="C1")
pl.axis(axis)
k = -1
pl.scatter(m_list[k][:, 0], m_list[k][:, 1], color="C2", alpha=1, label="Last step")
draw_gmm(m_list[k], C_list[k], w_list[0], color="C2", alpha=1)
pl.axis(axis)
pl.legend(fontsize=15)
##############################################################################
# Steps visualisation
# ------------------------
def index_to_color(i):
return int(i**0.5)
n_steps_visu = 100
pl.figure(3, (10, 10))
pl.clf()
pl.title("GMM flow, all steps")
its_to_show = [int(x) for x in np.linspace(1, n_gd_its - 1, n_steps_visu)]
cmp = cm["plasma"].resampled(index_to_color(n_steps_visu))
pl.scatter(
m_list[0][:, 0], m_list[0][:, 1], color=cmp(index_to_color(0)), label="Source"
)
draw_gmm(m_list[0], C_list[0], w_list[0], color=cmp(index_to_color(0)))
pl.scatter(
m_t[:, 0].detach(),
m_t[:, 1].detach(),
color=cmp(index_to_color(n_steps_visu - 1)),
label="Target",
)
draw_gmm(
m_t.detach(), C_t.detach(), w_t.numpy(), color=cmp(index_to_color(n_steps_visu - 1))
)
for k in its_to_show:
pl.scatter(
m_list[k][:, 0], m_list[k][:, 1], color=cmp(index_to_color(k)), alpha=0.8
)
draw_gmm(m_list[k], C_list[k], w_list[0], color=cmp(index_to_color(k)), alpha=0.04)
pl.axis(axis)
pl.legend(fontsize=15)
# %%