-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmm.py
66 lines (53 loc) · 2.17 KB
/
mm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""The script implements the first step of the experiment"""
from pathlib import Path
import numpy as np
from experimental_env.preparation.dataset_generator import (
ConcreteDatasetGenerator,
RandomDatasetGenerator,
)
from mpest.models import ExponentialModel, GaussianModel, WeibullModelExp
WORKING_DIR = Path("/home/iraedeus/Projects/stage_1")
SAMPLES_SIZE = 1000
np.random.seed(42)
r_generator = RandomDatasetGenerator()
mixtures = [
[ExponentialModel],
[GaussianModel],
[WeibullModelExp],
[WeibullModelExp, GaussianModel],
[ExponentialModel, GaussianModel],
[WeibullModelExp, WeibullModelExp],
[ExponentialModel, ExponentialModel],
]
for models in mixtures:
r_generator.generate(SAMPLES_SIZE, models, Path(WORKING_DIR), exp_count=100)
c_generator2 = ConcreteDatasetGenerator()
models = [ExponentialModel]
c_generator2.add_distribution(models[0], [1.0], 1.0)
c_generator2.generate(SAMPLES_SIZE, Path(WORKING_DIR), 5)
c_generator3 = ConcreteDatasetGenerator()
models = [GaussianModel]
c_generator3.add_distribution(models[0], [0, 1.0], 1.0)
c_generator3.generate(SAMPLES_SIZE, Path(WORKING_DIR), 5)
c_generator4 = ConcreteDatasetGenerator()
models = [WeibullModelExp]
c_generator4.add_distribution(models[0], [1.0, 1.0], 1.0)
c_generator4.generate(SAMPLES_SIZE, Path(WORKING_DIR), 5)
c_generator5 = ConcreteDatasetGenerator()
models = [WeibullModelExp]
c_generator5.add_distribution(models[0], [1.0, 1.0], 1.0)
c_generator5.generate(SAMPLES_SIZE, Path(WORKING_DIR), 5)
c_generator6 = ConcreteDatasetGenerator()
models = [WeibullModelExp]
c_generator6.add_distribution(models[0], [1.0, 0.5], 1.0)
c_generator6.generate(SAMPLES_SIZE, Path(WORKING_DIR), 5)
c_generator7 = ConcreteDatasetGenerator()
models = [GaussianModel, GaussianModel]
c_generator7.add_distribution(models[0], [-1.0, 2.5], 0.3)
c_generator7.add_distribution(models[1], [1.0, 0.5], 0.7)
c_generator7.generate(SAMPLES_SIZE, Path(WORKING_DIR), 10)
c_generator8 = ConcreteDatasetGenerator()
models = [GaussianModel, GaussianModel]
c_generator8.add_distribution(models[0], [0.0, 1.5], 0.6)
c_generator8.add_distribution(models[1], [1.0, 1.0], 0.4)
c_generator8.generate(SAMPLES_SIZE, Path(WORKING_DIR), 10)