|
| 1 | +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +""" DalleBart model configuration""" |
| 15 | +from __future__ import annotations |
| 16 | + |
| 17 | +from typing import Dict |
| 18 | + |
| 19 | +from paddlenlp.transformers.configuration_utils import PretrainedConfig |
| 20 | + |
| 21 | +__all__ = ["DALLEBART_PRETRAINED_INIT_CONFIGURATION", "DalleBartConfig", "DALLEBART_PRETRAINED_RESOURCE_FILES_MAP"] |
| 22 | + |
| 23 | +DALLEBART_PRETRAINED_RESOURCE_FILES_MAP = { |
| 24 | + "model_state": { |
| 25 | + "dalle-mini": "https://bj.bcebos.com/paddlenlp/models/transformers/dallebart/dalle-mini/model_state.pdparams", |
| 26 | + "dalle-mega-v16": "https://bj.bcebos.com/paddlenlp/models/transformers/dallebart/dalle-mega-v16/model_state.pdparams", |
| 27 | + "dalle-mega-v26": "https://bj.bcebos.com/paddlenlp/models/transformers/dallebart/dalle-mega-v26/model_state.pdparams", |
| 28 | + "dalle-mega": "https://bj.bcebos.com/paddlenlp/models/transformers/dallebart/dalle-mega-v26/model_state.pdparams", |
| 29 | + } |
| 30 | +} |
| 31 | + |
| 32 | +DALLEBART_PRETRAINED_INIT_CONFIGURATION = { |
| 33 | + "dalle-mini": { |
| 34 | + "text_vocab_size": 50264, |
| 35 | + "image_vocab_size": 16384, |
| 36 | + "bos_token_id": 16384, |
| 37 | + "pad_token_id": 16384, |
| 38 | + "eos_token_id": 16384, |
| 39 | + "max_text_length": 64, |
| 40 | + "max_image_length": 256, |
| 41 | + "decoder_start_token_id": 16384, |
| 42 | + "d_model": 1024, |
| 43 | + "num_encoder_layers": 12, |
| 44 | + "num_decoder_layers": 12, |
| 45 | + "encoder_attention_heads": 16, |
| 46 | + "decoder_attention_heads": 16, |
| 47 | + "encoder_ffn_dim": 2730, |
| 48 | + "decoder_ffn_dim": 2730, |
| 49 | + "dropout": 0.0, |
| 50 | + "activation_function": "gelu", |
| 51 | + "attention_dropout": 0.0, |
| 52 | + "activation_dropout": 0.0, |
| 53 | + "use_bias": False, |
| 54 | + "init_std": 0.02, |
| 55 | + }, |
| 56 | + "dalle-mega-v16": { |
| 57 | + "text_vocab_size": 50272, |
| 58 | + "image_vocab_size": 16415, |
| 59 | + "bos_token_id": 16384, |
| 60 | + "pad_token_id": 16384, |
| 61 | + "eos_token_id": 16384, |
| 62 | + "max_text_length": 64, |
| 63 | + "max_image_length": 256, |
| 64 | + "decoder_start_token_id": 16384, |
| 65 | + "d_model": 2048, |
| 66 | + "num_encoder_layers": 24, |
| 67 | + "num_decoder_layers": 24, |
| 68 | + "encoder_attention_heads": 32, |
| 69 | + "decoder_attention_heads": 32, |
| 70 | + "encoder_ffn_dim": 4096, |
| 71 | + "decoder_ffn_dim": 4096, |
| 72 | + "dropout": 0.0, |
| 73 | + "activation_function": "gelu", |
| 74 | + "attention_dropout": 0.0, |
| 75 | + "activation_dropout": 0.0, |
| 76 | + "use_bias": False, |
| 77 | + "init_std": 0.02, |
| 78 | + }, |
| 79 | + "dalle-mega-v26": { |
| 80 | + "text_vocab_size": 50272, |
| 81 | + "image_vocab_size": 16415, |
| 82 | + "bos_token_id": 16384, |
| 83 | + "pad_token_id": 16384, |
| 84 | + "eos_token_id": 16384, |
| 85 | + "max_text_length": 64, |
| 86 | + "max_image_length": 256, |
| 87 | + "decoder_start_token_id": 16384, |
| 88 | + "d_model": 2048, |
| 89 | + "num_encoder_layers": 24, |
| 90 | + "num_decoder_layers": 24, |
| 91 | + "encoder_attention_heads": 32, |
| 92 | + "decoder_attention_heads": 32, |
| 93 | + "encoder_ffn_dim": 4096, |
| 94 | + "decoder_ffn_dim": 4096, |
| 95 | + "dropout": 0.0, |
| 96 | + "activation_function": "gelu", |
| 97 | + "attention_dropout": 0.0, |
| 98 | + "activation_dropout": 0.0, |
| 99 | + "use_bias": False, |
| 100 | + "init_std": 0.02, |
| 101 | + }, |
| 102 | + "dalle-mega": { |
| 103 | + "text_vocab_size": 50272, |
| 104 | + "image_vocab_size": 16415, |
| 105 | + "bos_token_id": 16384, |
| 106 | + "pad_token_id": 16384, |
| 107 | + "eos_token_id": 16384, |
| 108 | + "max_text_length": 64, |
| 109 | + "max_image_length": 256, |
| 110 | + "decoder_start_token_id": 16384, |
| 111 | + "d_model": 2048, |
| 112 | + "num_encoder_layers": 24, |
| 113 | + "num_decoder_layers": 24, |
| 114 | + "encoder_attention_heads": 32, |
| 115 | + "decoder_attention_heads": 32, |
| 116 | + "encoder_ffn_dim": 4096, |
| 117 | + "decoder_ffn_dim": 4096, |
| 118 | + "dropout": 0.0, |
| 119 | + "activation_function": "gelu", |
| 120 | + "attention_dropout": 0.0, |
| 121 | + "activation_dropout": 0.0, |
| 122 | + "use_bias": False, |
| 123 | + "init_std": 0.02, |
| 124 | + }, |
| 125 | +} |
| 126 | + |
| 127 | + |
| 128 | +class DalleBartConfig(PretrainedConfig): |
| 129 | + r""" |
| 130 | + The bare DalleBart Model outputting raw hidden-states. |
| 131 | + This model inherits from :class:`~paddlenlp.transformers.model_utils.PretrainedModel`. |
| 132 | + Refer to the superclass documentation for the generic methods. |
| 133 | + This model is also a Paddle `paddle.nn.Layer <https://www.paddlepaddle.org.cn/documentation |
| 134 | + /docs/en/api/paddle/fluid/dygraph/layers/Layer_en.html>`__ subclass. Use it as a regular Paddle Layer |
| 135 | + and refer to the Paddle documentation for all matter related to general usage and behavior. |
| 136 | + Args: |
| 137 | + text_vocab_size (int): |
| 138 | + Vocabulary size of `inputs_ids` in `DalleBartModel`. Also is the vocab size of text token embedding matrix. |
| 139 | + Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling `DalleBartModel`. |
| 140 | + image_vocab_size (int): |
| 141 | + Vocabulary size of `decoder_inputs_ids` in `DalleBartModel`. Also is the vocab size of image token embedding matrix. |
| 142 | + Defines the number of different tokens that can be represented by the `decoder_inputs_ids` passed when calling `DalleBartModel`. |
| 143 | + bos_token (int, optional): |
| 144 | + The beginning of image sequence token that was used during pretraining. |
| 145 | + Defaults to `16384`. |
| 146 | + pad_token_id(int, optional): |
| 147 | + The index of padding token in the image token vocabulary. |
| 148 | + Defaults to `16384`. |
| 149 | + eos_token (int, optional): |
| 150 | + A special token representing the end of a image sequence. |
| 151 | + Defaults to `16384`. |
| 152 | + max_text_length (int, optional): |
| 153 | + The maximum value of the dimensionality of text position encoding, which dictates the maximum supported length of the text |
| 154 | + input sequence. Defaults to `64`. |
| 155 | + max_image_length (int, optional): |
| 156 | + The maximum value of the dimensionality of image position encoding, which dictates the maximum supported length of the image |
| 157 | + input sequence. Defaults to `256`. |
| 158 | + decoder_start_token_id (int, optional): |
| 159 | + The id indicating the start of decoding image sentence. Defaults to `16384`. |
| 160 | + d_model (int, optional): |
| 161 | + Dimensionality of the embedding layer, encoder layer and decoder layer. Defaults to `1024`. |
| 162 | + num_encoder_layers (int, optional): |
| 163 | + Number of hidden layers in the :class:`DalleBartEncoder`. Defaults to `12`. |
| 164 | + num_decoder_layers (int, optional): |
| 165 | + Number of hidden layers in the :class:`DalleBartDecoder`. Defaults to `12`. |
| 166 | + encoder_attention_heads (int, optional): |
| 167 | + Number of attention heads for each attention layer in the :class:`DalleBartEncoder`. |
| 168 | + Defaults to `16`. |
| 169 | + decoder_attention_heads (int, optional): |
| 170 | + Number of attention heads for each attention layer in the :class:`DalleBartDecoder`. |
| 171 | + Defaults to `16`. |
| 172 | + encoder_ffn_dim (int, optional): |
| 173 | + Dimensionality of the Gated Linear Units (glu) layer in the encoder. Input tensors |
| 174 | + to glu layers are firstly projected from `d_model` to `encoder_ffn_dim`, |
| 175 | + and then projected back to `d_model`. Typically `encoder_ffn_dim` is larger than `d_model`. |
| 176 | + Defaults to `2730`. |
| 177 | + decoder_ffn_dim (int, optional): |
| 178 | + Dimensionality of the Gated Linear Units (glu) layer in the encoder. Input tensors |
| 179 | + to glu layers are firstly projected from `d_model` to `decoder_ffn_dim`, |
| 180 | + and then projected back to `d_model`. Typically `decoder_ffn_dim` is larger than `d_model`. |
| 181 | + Defaults to `2730`. |
| 182 | + dropout (float, optional): |
| 183 | + The dropout probability used in all fully connected layers (pre-process and post-process of MHA and FFN sub-layer) |
| 184 | + in the encoders and decoders. Defaults to `0.`. |
| 185 | + activation_function (str, optional): |
| 186 | + The non-linear activation function in the glu layer. |
| 187 | + ``"gelu"``, ``"relu"`` and any other paddle supported activation functions are supported. |
| 188 | + Defaults to `"gelu"`. |
| 189 | + attention_dropout (float, optional): |
| 190 | + The dropout probability used in MultiHeadAttention in all encoder layers and decoder layers to drop some attention target. |
| 191 | + Defaults to `0.`. |
| 192 | + activation_dropout (float, optional): |
| 193 | + The dropout probability used after glu activation in all encoder layers and decoder layers. |
| 194 | + Defaults to `0.`. |
| 195 | + use_bias (bool, optional): |
| 196 | + Whether or not use bias in all linear layers. Defaults to `False`. |
| 197 | + init_std (float, optional): |
| 198 | + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
| 199 | + Default to `0.02`. |
| 200 | + """ |
| 201 | + pretrained_init_configuration = DALLEBART_PRETRAINED_INIT_CONFIGURATION |
| 202 | + model_type = "dallebart" |
| 203 | + attribute_map: Dict[str, str] = { |
| 204 | + "text_vocab_size": "vocab_size", |
| 205 | + } |
| 206 | + |
| 207 | + def __init__( |
| 208 | + self, |
| 209 | + vocab_size=50264, |
| 210 | + image_vocab_size=16384, |
| 211 | + bos_token_id=16384, |
| 212 | + pad_token_id=16384, |
| 213 | + eos_token_id=16384, |
| 214 | + max_text_length=64, |
| 215 | + max_image_length=256, |
| 216 | + decoder_start_token_id=16384, |
| 217 | + d_model=1024, |
| 218 | + num_encoder_layers=12, |
| 219 | + num_decoder_layers=12, |
| 220 | + encoder_attention_heads=16, |
| 221 | + decoder_attention_heads=16, |
| 222 | + encoder_ffn_dim=2730, |
| 223 | + decoder_ffn_dim=2730, |
| 224 | + dropout=0.0, |
| 225 | + activation_function="gelu", |
| 226 | + attention_dropout=0.0, |
| 227 | + activation_dropout=0.0, |
| 228 | + use_bias=False, |
| 229 | + init_std=0.02, |
| 230 | + **kwargs |
| 231 | + ): |
| 232 | + super().__init__(pad_token_id=pad_token_id, **kwargs) |
| 233 | + self.vocab_size = vocab_size |
| 234 | + self.image_vocab_size = image_vocab_size |
| 235 | + self.bos_token_id = bos_token_id |
| 236 | + self.eos_token_id = eos_token_id |
| 237 | + self.max_text_length = max_text_length |
| 238 | + self.max_image_length = max_image_length |
| 239 | + self.d_model = d_model |
| 240 | + self.num_encoder_layers = num_encoder_layers |
| 241 | + self.num_decoder_layers = num_decoder_layers |
| 242 | + self.encoder_attention_heads = encoder_attention_heads |
| 243 | + self.decoder_attention_heads = decoder_attention_heads |
| 244 | + self.encoder_ffn_dim = encoder_ffn_dim |
| 245 | + self.decoder_ffn_dim = decoder_ffn_dim |
| 246 | + self.dropout = dropout |
| 247 | + self.activation_function = activation_function |
| 248 | + self.attention_dropout = attention_dropout |
| 249 | + self.activation_dropout = activation_dropout |
| 250 | + self.use_bias = use_bias |
| 251 | + self.init_std = init_std |
| 252 | + self.pad_token_id = pad_token_id |
| 253 | + self.decoder_start_token_id = decoder_start_token_id |
| 254 | + self.text_pad_token_id = 1 # encoder pad id must be 1 |
0 commit comments