-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBDARG-Python.tex
240 lines (161 loc) · 5.57 KB
/
BDARG-Python.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
\documentclass{beamer}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{framed}
\usepackage{subfiles}
\begin{document}
%-------------------------------------------- %
% Schedule 0
% Leadout
% - PyData Berlin and London
% Schdule 1
% - Anaconda
% - Building Bloack - numpy pandas etc
% Schedule 2
% - SKL capabilities
% ======== %
\huge
\[\mbox{Data Science with Python} \]
{
\[\mbox{(with \texttt{scikit.learn}})\]
}
\bigskip
\[ \mbox{Big Data Analytics Research Group} \]
\[ \mbox{University of Limerick} \]
% ======== %
[fragile]
\frametitle{Data Science with Python}
[(i)] Some Opening Comments
[(ii)] Python Environment
[(iii)] What is Machine Learning?
[(iv)] Useful Packages
[(iv)] \texttt{scikit.learn}
\subfile{00-leadout.tex}
% %
\frametitle{Data Science with Python}
\begin{figure}
\centering
\includegraphics[width=1.1\linewidth]{pythonlogo}
\end{figure}
% %
\frametitle{Data Science with Python}
\textbf{What is Python?}
\begin{quote}
Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid Application Development, as well as for use as a scripting or glue language to connect existing components together.
\end{quote}
(Python.org)
% %
\frametitle{Data Science with Python}
\textbf{What is Python?}
\begin{quote}
Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed.
\end{quote}
(Python.org)
% %
\frametitle{Data Science with Python}
\textbf{History of Python}
\begin{quote}
Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although it includes many contributions from others.
\end{quote}
% ===== %
\begin{figure}
\centering
\includegraphics[width=1.1\linewidth]{mjasay}
\end{figure}
% ===== %
\begin{figure}
\centering
\includegraphics[width=1.1\linewidth]{hypecycle}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=0.9\linewidth]{mjasay2}
\end{figure}
% ===== %
\begin{figure}
\centering
\includegraphics[width=1.1\linewidth]{KnowledgePyramid}
\end{figure}
% ===== %
\subfile{01-Introduction.tex}
\subfile{01-versionsconventions.tex}
% ======== %
\subfile{02-machinelearning}
\subfile{02-visualization.tex}
%\subfile{02-packages.tex}
% ======== %
\huge
Three Core Packages
\begin{enumerate}
numpy
pandas
scipy
\end{enumerate}
\begin{figure}
\centering
\includegraphics[width=0.7\linewidth]{pandaslogo}\\
\includegraphics[width=0.7\linewidth]{scipylogo}
\end{figure}
% %
\subfile{numpy.tex}
\subfile{pandas}
\subfile{scipy.tex}
% ===== %
\begin{figure}
\centering
\includegraphics[width=1.1\linewidth]{machinelearningquotes}
\end{figure}
Machine Learning is Statistics minus any checking of models or assumptions
% =%
\frametitle{The Data Science Profession}
Data Science Retreat (Berlin)
\begin{quote}
MOOC have not decreased the barrier of entry to machine-learning.
Nowadays, you cannot be 'the guy who knows how to run (insert off-the-shelf-algo-here)'.
In dataland, that's the equivalent to being a code monkey. MOOCs and superb libraries (scikit-learn, R's ecosystem) made
sure there is plenty of people who can throw say a random forest to a problem. In the modern world, this is not adding that much value.
\end{quote}
% =====%
\frametitle{scikit.learn}
\begin{figure}
\centering
\includegraphics[width=0.5\linewidth]{SKL-logo2}
\end{figure}
scikit-learn is an open source machine learning library for the Python programming language.
scikit-learn features various classification, regression and clustering algorithms including support vector machines, logistic regression, naive Bayes, random forests, gradient boosting, k-means and DBSCAN. scikit-learn is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.
% =====%
\textbf{Sci-Kit Learn Site info}
\begin{figure}
\centering
\includegraphics[width=1.1\linewidth]{SKLsiteinfo}
\end{figure}
% =====%
\begin{figure}
\centering
\includegraphics[width=0.9\linewidth]{SKLCheatSheet}
\end{figure}
% =====%
\begin{figure}
\centering
\includegraphics[width=0.9\linewidth]{SKLCheatSheet2}
\end{figure}
\subfile{02-skltopics.tex}
%\subfile{01-Introduction.tex}
% =====%
\frametitle{statsmodels}
\textbf{statsmodel}
\texttt{statsmodels} provides a large range of cross-sectional models aswell assometime-series models.
statsmodels
uses a model descriptive language (provided via the Python package patsy) to formulate the model
when working with pandas \texttt{DataFrames}.
Models supported include linear regression, generalized linear
models, limited dependent variable models, ARMA and VAR models.
\subfile{textmining.tex}
%\subfile{03-datastructures.tex}
%\subfile{06-specialarrays.tex}
%\subfile{09-probdistributions.tex}
\subfile{07-sklclass.tex}
\subfile{03-decisiontrees.tex}
\subfile{03-SVMs.tex}
% ======== %
\end{document}