-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEKF_run.m
117 lines (91 loc) · 3.22 KB
/
EKF_run.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
clear
close all
clc
%% Prakrit Tyagi : EKF Program tracking a vehicle with acceleration and range measurements
% date : 3 august 2021
% constants
del_t = 1; % discrete time 1 sec
total_time = 300; % Total simulation time in seconds
% Beacon parameters
h = 500;
x1 = -1000;
x2 = 3000;
x3 = 4000;
% To save simulated and estimated state values
X_est = zeros(2,total_time+1);
X_true = zeros(2,total_time+1);
% initialize
x_true = [0;0]; % initial true state
x_guess = [2;2]; % guess for initialization of states
X_est(:,1) = x_guess;
X_true(:,1)= x_true;
P = [2,0;0,2]; % guess of state estimation covariance matrix
% Q = [0.01 0 ;0 0.1];
sd_a = 0.5; % Assuming standard deviation of acceleration for process noise covariance matrix
Q = sd_a^2*[0.25*del_t^4, 0.5*del_t^3 ; 0.5*del_t^3, del_t^2]; % Process noise covariance matrix
%% Kalman Filter simulation
fig1 = figure;
line = 1:1:(total_time+1);
for i = 0:1:(total_time-1)
b = 0.01; % bias in acceleration measurement
a_noise = normrnd(0,0.001); % random noise in acceleration
if i<100
a_true = (0.05/100)*i;
a_meas = a_true + b + a_noise;
elseif i<=100 && i <200
a_true = 0.05;
a_meas = a_true + b + a_noise;
else
a_true = -(0.05/100)*i + 3*0.05;
a_meas = a_true + b + a_noise;
end
F = [1, del_t;0, 1]; % F matrix for state prediction equation
G = [0.5*del_t^2 ; del_t]; % G matrix for state prediction equation
% Prediction Equation for state and P
X_est(:,i+2)= F*X_est(:,i+1) + G*a_meas;
P = F*P*F' + Q;
% True Next state of vehicle
a = a_true + normrnd(0,0.5);
X_true(:,i+2)= F*X_true(:,i+1) + G*a;
%simulate range measurement
r1 = sqrt( (X_true(1,i+2) - x1)^2 + h^2 ) + normrnd(0,1);
r2 = sqrt( (X_true(1,i+2) - x2)^2 + h^2 ) + normrnd(0,1);
r3 = sqrt( (X_true(1,i+2) - x3)^2 + h^2 ) + normrnd(0,1);
z = [r1;r2;r3]; % range measurement vector
r1_est = sqrt( (X_est(1,i+2) - x1)^2 + h^2 ) ;
r2_est = sqrt( (X_est(1,i+2) - x2)^2 + h^2 ) ;
r3_est = sqrt( (X_est(1,i+2) - x3)^2 + h^2 ) ;
z_est = [r1_est;r2_est;r3_est]; % estimating range measurements
% Jacobian matrix
H = [ (X_est(1,i+2) - x1)/r1_est, 0; (X_est(1,i+2) - x2)/r2_est, 0; (X_est(1,i+2) - x3)/r3_est, 0];
% Measurement covariance matrix
R = [1.5 0 0; 0 1.5 0; 0 0 1.5];
% Kalman Gain
K = P*(H')/(H*P*H' + R);
% Update Equations for state and P (Correction of prediction)
X_est(:,i+2) = X_est(:,i+2) + K*(z - z_est);
P = (eye(2) - K*H)*P*(eye(2) - K*H)' + K*R*K';
clf
hold on
plot( line(1,1:(i+1)), X_est(1,1:(i+1)),line(1,1:(i+1)), X_true(1,1:(i+1)),'--')
grid on
xlabel('time')
ylabel('xtrue vs xest')
drawnow
i
end
fig2 = figure;
plot(line, X_est(2,:),line, X_true(2,:),'--')
grid on
xlabel('time')
ylabel('v true vs v est')
fig3 = figure;
plot(line, X_est(1,:)- X_true(1,:))
grid on
xlabel('time')
ylabel('Error in position')
fig4 = figure;
plot(line, X_est(2,:)- X_true(2,:))
grid on
xlabel('time')
ylabel('Error in velocity')