-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_voc_to_yolo.py
99 lines (82 loc) · 2.86 KB
/
convert_voc_to_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
'''
Code obtained from
https://gist.github.com/Amir22010/a99f18ca19112bc7db0872a36a03a1ec
and
change according to the my requirements
'''
import glob
import os
import pickle
import xml.etree.ElementTree as ET
from os import listdir, getcwd
from os.path import join
############ CONFIGURATION ############
''''
Make sure you have train, val and/or test subsets in the current directory
'''
dirs = ['train', 'val', 'test']
'''
Name your classes exactly same as you have used in your annotation in Voc
Order is important for consistency so make sure to put in order as you want them
'''
classes = ['Echidna', 'Scorpion', 'Spider', 'Big_mammal', 'Small_mammal', 'Bird', 'Bird','Lizard', 'Frog', 'Snake']
'''
Image extension
'''
IMG_EXT = 'PNG'
# get images from current dirctory
def getImagesInDir(dir_path):
image_list = []
for filename in glob.glob(dir_path + f'/*.{IMG_EXT}'):
image_list.append(filename)
return image_list
# converstion into YOLO format
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(dir_path, output_path, image_path):
basename = os.path.basename(image_path)
basename_no_ext = os.path.splitext(basename)[0]
in_file = open(dir_path + '/' + basename_no_ext + '.xml')
out_file = open(output_path + basename_no_ext + '.txt', 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
if __name__=='__main__':
# current directory
cwd = getcwd()
# start conversion for each subsets (train, val and test)
for dir_path in dirs:
full_dir_path = cwd + '/' + dir_path
output_path = full_dir_path +'/yolo/'
if not os.path.exists(output_path):
os.makedirs(output_path)
image_paths = getImagesInDir(full_dir_path)
list_file = open(full_dir_path + '.txt', 'w')
for image_path in image_paths:
list_file.write(image_path + '\n')
convert_annotation(full_dir_path, output_path, image_path)
print(f"{image_path} Converted!")
list_file.close()
print(f"{dir_path} Subset Conversion Completed!")