|
| 1 | +# Chapter 4 - Building a Reverse Image Search Engine: Understanding Embeddings |
| 2 | + |
| 3 | +Note: All images in this directory, unless specified otherwise, are licensed under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/legalcode). |
| 4 | + |
| 5 | +## Figure List |
| 6 | + |
| 7 | +| Figure number | Description | Notes | |
| 8 | +|:---|:---|:---| |
| 9 | +| [4-1](1-rgb-histogram?raw=true) | RGB histogram-based "Similar Image Detector" program | | |
| 10 | +| [4-2](2-amazon-scan.png?raw=true) | Product scanner in Amazon app with visual features highlighted | | |
| 11 | +| [4-3](3-tqdm.png) | Progress bar shown with tqdm_notebook | | |
| 12 | +| [4-4](4-original-image.png?raw=true) |The query image from the Caltech-101 dataset | | |
| 13 | +| [4-5](5-first-result.png?raw=true) | The nearest neighbor to our query image | | |
| 14 | +| [4-6](6-second-closest.png?raw=true) | The second nearest neighbour of the queried image | | |
| 15 | +| [4-7](7-nearest-neighbors.png?raw=true) | Nearest neighbor for different images returns similar-looking images | | |
| 16 | +| [4-8](8-tsne.png?raw=true) | t-SNE visualizing clusters of image features, where each cluster represents one object class in the same color | | |
| 17 | +| [4-9](9-tsne-clusters.png?raw=true) | t-SNE visualization showing image clusters; similar images in the same cluster | | |
| 18 | +| [4-10](10-tsne-grid.png?raw=true) | t-SNE visualization with tiled images; similar images are close together | | |
| 19 | +| [4-11](11-tensorflow-embedding-projector.png?raw=true) | TensorFlow Embedding projector showing a 3D representation of 10,000 common English words and highlighting words related to "Beatles" | | |
| 20 | +| [4-12](12-variance-vs-num-pca-dimensions.png?raw=true) | Variance for each PCA dimension | |
| 21 | +| [4-13](13-cumulative-variance-vs-num-pca-dimensions.png?raw=true) | Cumulative variance with each PCA dimension | | |
| 22 | +| [4-14](14-test-time-vs-accuracy.png?raw=true) | Test time versus accuracy for each PCA dimension | | |
| 23 | +| [4-15](15-recall-vs-qps.png?raw=true) | Comparison of ANN libraries ([data source](http://ann-benchmarks.com/)) | | |
| 24 | +| [4-16](16-before-finetune.png?raw=true) | t-SNE visualization of feature vectors of least-accurate classes before fine tuning | | |
| 25 | +| [4-17](17-after-finetune.png?raw=true) | t-SNE visualization of feature vectors of least-accurate classes after fine tuning | | |
| 26 | +| [4-18](18-siamese-network-flowchart.png?raw=true) | A Siamese network for signature verification; note that the same CNN was used for both input images | | |
| 27 | +| [4-19](https://code.flickr.net/2017/03/07/introducing-similarity-search-at-flickr/) | Similar patterns of a desert photo | | |
| 28 | +| [4-20](https://labs.pinterest.com/user/themes/pin_labs/assets/paper/visual_search_at_pinterest.pdf) | The Similar Looks feature of the Pinterest application | | |
| 29 | +| [4-21](21-celebs-like-me.png?raw=true) | Testing our friend Pete Warden’s photo on the [celebslike.me](celebslike.me) website | | |
| 30 | +| [4-22](https://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf) | t-SNE visualization of the distribution of predicted usage patterns, using latent factors predicted from audio | Page 7 | |
| 31 | +| [4-23a](23a-image-captioning.png?raw=true), [4-23b](23b-image-captioning.png?raw=true), [4-23c](23c-image-captioning.png?raw=true) | Image captioning feature in Seeing AI: the Talking Camera App for the blind community | | |
| 32 | +| [4-24](https://arxiv.org/pdf/1608.08716.pdf) | Defining a CNN and visualizing the output of each layer during training in ConvNetJS | Page 2 | |
0 commit comments