diff --git a/pytorch_ssim/__init__.py b/pytorch_ssim/__init__.py index 738e803..1e8c300 100644 --- a/pytorch_ssim/__init__.py +++ b/pytorch_ssim/__init__.py @@ -4,9 +4,11 @@ import numpy as np from math import exp + def gaussian(window_size, sigma): - gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) - return gauss/gauss.sum() + gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) + return gauss / gauss.sum() + def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) @@ -14,34 +16,38 @@ def create_window(window_size, channel): window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window -def _ssim(img1, img2, window, window_size, channel, size_average = True): - mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel) - mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel) + +# data(dynamic) range was added by the original SSIM paper. data(dynamic) range L is 255 for 8-bit grayscale images +def _ssim(img1, img2, window, window_size, channel, size_average=True, data_range=255): + mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) + mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) - mu1_mu2 = mu1*mu2 + mu1_mu2 = mu1 * mu2 - sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq - sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq - sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2 + sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq + sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq + sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 - C1 = 0.01**2 - C2 = 0.03**2 + C1 = (0.01 * data_range) ** 2 + C2 = (0.03 * data_range) ** 2 - ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2)) + ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1) + class SSIM(torch.nn.Module): - def __init__(self, window_size = 11, size_average = True): + def __init__(self, window_size=11, size_average=True, data_range=255): super(SSIM, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 + self.DR = data_range self.window = create_window(window_size, self.channel) def forward(self, img1, img2): @@ -51,23 +57,23 @@ def forward(self, img1, img2): window = self.window else: window = create_window(self.window_size, channel) - + if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) - + self.window = window self.channel = channel + return _ssim(img1, img2, window, self.window_size, channel, self.size_average, data_range) - return _ssim(img1, img2, window, self.window_size, channel, self.size_average) -def ssim(img1, img2, window_size = 11, size_average = True): +def ssim(img1, img2, window_size=11, size_average=True, data_range=255): (_, channel, _, _) = img1.size() window = create_window(window_size, channel) - + if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) - - return _ssim(img1, img2, window, window_size, channel, size_average) + + return _ssim(img1, img2, window, window_size, channel, size_average, data_range)