-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtr_test.py
129 lines (103 loc) · 3.25 KB
/
tr_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from trgv import GradientTR
from dogleg import Dogleg
import numpy as np
import time
data = np.load("LRData.npz")
X = data['X']
y = data['y']
X_t = data['X_test']
y_t = data['y_test']
n = np.shape(X)[1]
m = np.shape(X)[0]
m_test = np.shape(X_t)[0]
lam = 1e-5
def f(beta, X, y, lam, m):
l = np.zeros(m)
grad = np.zeros(m)
for i in range(m):
e = np.exp(-y[i]*beta.dot(X[i,:]))
l[i] = np.log(1+e)
grad = np.mean(l)+lam*beta.dot(beta)
return grad"
class TR(object):
"""
TR-Method taken from Grundzuege der NLO von O.Stein (Algorithm 2.8)
"""
def trustRegion(self, fo, tr_solver,print_steps=False,eps=0.0001, maxRad=1.0,startRad=0.5,eta=0.25):
t0 = time.time()
k=0
x0 = fo.x0
f = fo.f
fd = fo.fd
H = fo.H
x = fo.x0
"""
Select Solver for TR-Subproblem
"""
t = startRad
while(np.linalg.norm(fd(x)) > eps):
solver = None
if(tr_solver == 'grad'):
solver = GradientTR(fd(x),None,radius=t)
elif(tr_solver == 'dogleg'):
solver = Dogleg(fd(x), H(x), radius=t)
else:
print("ERROR, NO SUBPROBLEM SELECTED. EXITING")
exit()
d = solver.work()
r = 0
r = (f(x) - f(x + d))/(solver.m(np.zeros(x0.shape[0]),f(x), fd(x),H(x)) - solver.m(d,f(x), fd(x),H(x)))
if(r < 0.25):
t = 0.25 * np.linalg.norm(d)
else:
if r > 0.75 and np.isclose(np.linalg.norm(d), t, eps):
t = min(2*t, maxRad)
else:
t = t
if r > eta:
x = x + d
else:
x = x
if(print_steps):
print("Now at x =",x, "where f(x) =",f(x))
k = k + 1
t1 = time.time()
return x, k, t1 - t0
"""
Create function for TR-Method
"""
class Function(object):
x0 = None
f = None
fd = None
H = None
def __init__(self, x0, f, fd, H):
self.x0 = x0
self.f = f
self.fd = fd
self.H = H
"""
Rosenbrock-function
"""
def testFunctionRosenbrock():
f = lambda xy: (10*(xy[0] - xy[1]**2))**2 + (1-xy[0])**2
fd = lambda xy: np.array([202.*xy[0] - 200*xy[1]**2 - 2, -400*xy[1]*(xy[0] - xy[1]**2)])
H = lambda xy: np.array([ [202., -400.*xy[1] ],
[-400.*xy[1], 800.*xy[1]**2 - 400.*(xy[0] - xy[1]**2) ]
])
x0 = np.array([-1.2,1])
return Function(x0,f,fd,H)
"""
Print results
"""
print("STARTING TESTS")
a = TR()
print("-----Testing Rosenbrock function-----")
f = Function.testFunctionRosenbrock()
s_dg, k_dg, t_dg = a.trustRegion(f,'dogleg')
s_gr, k_gr, t_gr = a.trustRegion(f,'grad')
print("Trust region result (STTCGTR): ",s_dg, "- Required steps:", k_dg, "- Time:",t_dg)
print("Trust region result (Grad): ",s_gr, "- Required steps:", k_gr, "- Time",t_gr)
assert np.allclose(s_dg, np.array([1.,1.]), rtol=1e-04, atol=1e-05)
assert np.allclose(s_gr, np.array([1.,1.]), rtol=1e-04, atol=1e-05)
print(" + Pass")