-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex5.py
157 lines (126 loc) · 4.85 KB
/
ex5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
Author: <Pascal Gruber>
Matr.Nr.: <12005914>
Exercise <5>
"""
import pickle
from PIL import Image
import numpy as np
import random
from model import CNN
from createDataset import ImgDataset
import torch
def random_img(input_arrays, known_arrays, border_x, border_y, sample_ids):
target = input_arrays[known_arrays == 0]
for i in range(len(target)):
target[i] = random.randint(0, 255)
return target
def mean_img(input_arrays, known_arrays, border_x, border_y, sample_ids):
mean = np.mean(input_arrays)
target = input_arrays[known_arrays == 0]
target[:] = mean
return target
def make_img(data):
for i in data:
test = i[0]
img = Image.fromarray(i[0], 'L')
img.save(f"images/{i[4]}.png")
def pkl_to_data(file):
with open(file, 'rb') as file:
data = pickle.load(file)
input_arrays = data['input_arrays']
known_arrays = data['known_arrays']
border_x = data['borders_x']
border_y = data['borders_y']
sample_ids = data['sample_ids']
for i in range(len(input_arrays)):
yield input_arrays[i], known_arrays[i], border_x[i], border_y[i], sample_ids[i]
def train_network(model: torch.nn.Module, data_loader: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer, device: torch.device = r'cpu') -> None:
"""
Train specified network for one epoch on specified data loader.
:param model: network to train
:param data_loader: data loader to be trained on
:param optimizer: optimizer used to train network
:param device: device on which to train network
:return: None
"""
model.train()
# Found here: https://www.programmersought.com/article/53493453409/
criterion = torch.nn.MSELoss()
for batch_index, (data, target, known) in enumerate(data_loader):
data, target = data.float().to(device), target.float().to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
def test_network(model: torch.nn.Module, data_loader: torch.utils.data.DataLoader,
device: torch.device = r'cpu'):
"""
Test specified network on specified data loader.
:param model: network to test on
:param data_loader: data loader to be tested on
:param device: device on which to test network
:return: cross-entropy loss as well as accuracy
"""
model.eval()
loss = 0.0
correct = 0
criterion = torch.nn.MSELoss()
with torch.no_grad():
for data, target, known in data_loader:
data, target = data.float().to(device), target.float().to(device)
output = model(data)
data = data.float().to(r'cpu')
final_img = data.numpy()[0]
print(final_img)
final_img[known.numpy()[0] == 0] = output.float().to(r'cpu').numpy()[0][known.numpy()[0] == 0]
final_img = torch.tensor(final_img).to(device)
loss += float(criterion(final_img, target).item())
# print(output.max())
# pred = output.max(1, keepdim=True)[1]#
# correct += int(pred.eq(target.view_as(pred)).sum().item())
return loss / len(data_loader.dataset) # , correct / len(data_loader.dataset)
if __name__ == "__main__":
'''
Random: -8356
Mean: -3787
file = "example_testset.pkl"
data = pkl_to_data(file)
targets = []
for input_arrays, known_arrays, border_x, border_y, sample_ids in data:
target = random_img(input_arrays, known_arrays, border_x, border_y, sample_ids)
input_arrays[known_arrays == 0] = target
img = Image.fromarray(input_arrays, 'L')
img.save(f"outputIMG/{sample_ids}.png")
targets.append(target)
with open("solution.pkl", "wb") as submission:
pickle.dump(targets, submission)
'''
model = CNN()
cDataSet = ImgDataset()
cDataSetTrain = torch.utils.data.Subset(cDataSet, list(range(100)))
cDataSetTest = torch.utils.data.Subset(cDataSet, list(range(25000, len(cDataSet))))
device = torch.device(r'cuda' if torch.cuda.is_available() else r'cpu')
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
train_set = torch.utils.data.DataLoader(
dataset=cDataSetTrain,
batch_size=1
)
test_set = torch.utils.data.DataLoader(
dataset=cDataSetTest,
batch_size=1
)
for epoch in range(1):
train_network(model=model, data_loader=train_set, device=device, optimizer=optimizer)
performance = test_network(model=model, data_loader=train_set, device=device)
for input, target in test_set:
input = input.float().to(device)
output = model(input)
print(output)
output = output.int().to(r'cpu')
print(output)
Image.fromarray(np.uint8(output.reshape(90, 90)), 'L').show()
break