Skip to content

Commit a8ee85e

Browse files
committed
Update README and add benchmarking notebook
1 parent 338ed04 commit a8ee85e

File tree

5 files changed

+1537
-9
lines changed

5 files changed

+1537
-9
lines changed

README.md

Lines changed: 24 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -29,24 +29,41 @@ For more information, see our [paper](http://www.arxiv.org/abs/1902.10345).
2929

3030
See an example SDFG [in the standalone viewer (SDFV)](https://spcl.github.io/dace/sdfv.html?url=https://spcl.github.io/dace/examples/gemm.sdfg).
3131

32-
Tutorials
33-
---------
32+
Quick Start
33+
-----------
34+
35+
Install DaCe with pip: `pip install dace`
36+
37+
Using DaCe in Python is as simple as adding a `@dace` decorator:
38+
```python
39+
import dace
40+
import numpy as np
41+
42+
@dace
43+
def myprogram(a):
44+
for i in range(a.shape[0]):
45+
a[i] += i
46+
return np.sum(a)
47+
```
48+
49+
Calling `myprogram` with any NumPy array or `__{cuda_}array_interface__`-supporting tensor (e.g., PyTorch, Numba) will generate data-centric code, compile, and run it. From here on out, you can _optimize_ (interactively or automatically), _instrument_, and _distribute_ your code. The code creates a shared library (DLL/SO file) that can readily be used in any C ABI compatible language (C/C++, FORTRAN, etc.).
50+
51+
For more information on how to use DaCe, see the [samples](samples) or tutorials below:
3452

3553
* [Getting Started](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/getting_started.ipynb)
54+
* [Benchmarks, Instrumentation, and Performance Comparison with Other Python Compilers](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/benchmarking.ipynb)
3655
* [Explicit Dataflow in Python](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/explicit.ipynb)
3756
* [NumPy API Reference](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/numpy_frontend.ipynb)
3857
* [SDFG API](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/sdfg_api.ipynb)
3958
* [Using and Creating Transformations](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/transformations.ipynb)
4059
* [Extending the Code Generator](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/codegen.ipynb)
4160

42-
Installation and Dependencies
43-
-----------------------------
44-
45-
To install: `pip install dace`
61+
Dependencies
62+
------------
4663

4764
Runtime dependencies:
4865
* A C++14-capable compiler (e.g., gcc 5.3+)
49-
* Python 3.6 or newer
66+
* Python 3.7 or newer (Python 3.6 is supported but not actively tested)
5067
* CMake 3.15 or newer
5168

5269
Running

0 commit comments

Comments
 (0)