Paddle Serving支持使用昇腾NPU芯片进行预测部署。目前支持在昇腾芯片(910/310)和arm服务器上进行部署,后续完善对其他异构硬件服务器部署能力。
我们推荐使用docker部署Serving服务,可以直接从Paddle的官方镜像库拉取预先装有 CANN 社区版 5.0.2.alpha005 的 docker 镜像。
# 拉取镜像
docker pull paddlepaddle/paddle:latest-dev-cann5.0.2.alpha005-gcc82-aarch64
# 启动容器,注意这里的参数 --device,容器仅映射设备ID为4到7的4张NPU卡,如需映射其他卡相应增改设备ID号即可
docker run -it --name paddle-npu-dev -v /home/<user_name>:/workspace \
--pids-limit 409600 --network=host --shm-size=128G \
--cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
--device=/dev/davinci4 --device=/dev/davinci5 \
--device=/dev/davinci6 --device=/dev/davinci7 \
--device=/dev/davinci_manager \
--device=/dev/devmm_svm \
--device=/dev/hisi_hdc \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/dcmi:/usr/local/dcmi \
paddlepaddle/paddle:latest-dev-cann5.0.2.alpha005-gcc82-aarch64 /bin/bash
# 检查容器中是否可以正确识别映射的昇腾DCU设备
npu-smi info
# 预期得到类似如下的结果
+------------------------------------------------------------------------------------+
| npu-smi 1.9.3 Version: 21.0.rc1 |
+----------------------+---------------+---------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) |
| Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) |
+======================+===============+=============================================+
| 4 910A | OK | 67.2 30 |
| 0 | 0000:C2:00.0 | 0 303 / 15171 0 / 32768 |
+======================+===============+=============================================+
| 5 910A | OK | 63.8 25 |
| 0 | 0000:82:00.0 | 0 2123 / 15171 0 / 32768 |
+======================+===============+=============================================+
| 6 910A | OK | 67.1 27 |
| 0 | 0000:42:00.0 | 0 1061 / 15171 0 / 32768 |
+======================+===============+=============================================+
| 7 910A | OK | 65.5 30 |
| 0 | 0000:02:00.0 | 0 2563 / 15078 0 / 32768 |
+======================+===============+=============================================+
基本环境配置可参考该文档进行配置。
1、依赖安装
安装编译所需依赖库,包括patchelf、libcurl等
apt-get install patchelf libcurl4-openssl-dev libbz2-dev libgeos-dev
2、GOLANG环境配置
下载并配置ARM版本的GOLANG-1.17.2
wget https://golang.org/dl/go1.17.2.linux-arm64.tar.gz
tar zxvf go1.17.2.linux-arm64.tar.gz -C /usr/local/
mkdir /root/go /root/go/bin /root/go/src
echo "GOROOT=/usr/local/go" >> /root/.bashrc
echo "GOPATH=/root/go" >> /root/.bashrc
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
source /root/.bashrc
go env -w GO111MODULE=on
go env -w GOPROXY=https://goproxy.cn,direct
go install github.com/grpc-ecosystem/grpc-gateway/[email protected]
go install github.com/grpc-ecosystem/grpc-gateway/[email protected]
go install github.com/golang/protobuf/[email protected]
go install google.golang.org/[email protected]
go env -w GO111MODULE=auto
3、PYTHON环境配置
下载python依赖库并配置环境
pip3.7 install -r python/requirements.txt -i https://mirror.baidu.com/pypi/simple
export PYTHONROOT=/opt/conda
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.7m
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.7m.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.7
4、编译server
mkdir build-server-npu && cd build-server-npu
cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR/ \
-DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DCMAKE_INSTALL_PREFIX=./output \
-DWITH_ASCEND_CL=ON \
-DSERVER=ON ..
make TARGET=ARMV8 -j16
5、安装编译包
编译步骤完成后,会在各自编译目录$build_dir/python/dist生成whl包,分别安装即可。例如server步骤,会在server-build-npu/python/dist目录下生成whl包, 使用命令pip install -u xxx.whl
进行安装。
为了支持arm+昇腾910服务部署,启动服务时需使用以下参数。
参数 | 参数说明 | 备注 |
---|---|---|
use_ascend_cl | 使用Ascend CL进行预测 | 使用Ascend预测能力 |
以Bert为例
启动rpc服务,使用Ascend npu优化加速能力
python3 -m paddle_serving_server.serve --model bert_seq128_model --thread 6 --port 9292 --use_ascend_cl
我们推荐使用docker部署Serving服务,可以拉取装有 CANN 3.3.0 docker 镜像。
# 拉取镜像
docker pull registry.baidubce.com/paddlepaddle/serving:ascend-aarch64-cann3.3.0-paddlelite-devel
# 启动容器,注意这里的参数 --device,容器仅映射设备ID为4到7的4张NPU卡,如需映射其他卡相应增改设备ID号即可
docker run -it --name paddle-npu-dev -v /home/<user_name>:/workspace \
--pids-limit 409600 --network=host --shm-size=128G \
--cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
--device=/dev/davinci4 --device=/dev/davinci5 \
--device=/dev/davinci6 --device=/dev/davinci7 \
--device=/dev/davinci_manager \
--device=/dev/devmm_svm \
--device=/dev/hisi_hdc \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/dcmi:/usr/local/dcmi \
registry.baidubce.com/paddlepaddle/serving:ascend-aarch64-cann3.3.0-paddlelite-devel /bin/bash
基本环境配置可参考该文档进行配置。
1、PYTHON环境配置
下载python依赖库并配置环境
pip3.7 install -r python/requirements.txt -i https://mirror.baidu.com/pypi/simple
export PYTHONROOT=/usr/local/python3.7.5
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.7m
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.7m.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.7
2、编译server
mkdir build-server-npu && cd build-server-npu
cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR/ \
-DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DCMAKE_INSTALL_PREFIX=./output \
-DWITH_ASCEND_CL=ON \
-DWITH_LITE=ON \
-DSERVER=ON ..
make TARGET=ARMV8 -j16
3、安装编译包
编译步骤完成后,会在各自编译目录$build_dir/python/dist生成whl包,分别安装即可。例如server步骤,会在server-build-npu/python/dist目录下生成whl包, 使用命令pip install -u xxx.whl
进行安装。
为了支持arm+昇腾310服务部署,启动服务时需使用以下参数。
参数 | 参数说明 | 备注 |
---|---|---|
use_ascend_cl | 使用Ascend CL进行预测 | 使用Ascend预测能力 |
use_lite | 使用Paddle-Lite Engine | 使用Paddle-Lite cpu预测能力 |
以resnet50为例
启动rpc服务,使用Paddle-Lite npu优化加速能力
python3 -m paddle_serving_server.serve --model resnet_v2_50_imagenet_model --thread 6 --port 9292 --use_ascend_cl --use_lite