-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpre.py
123 lines (101 loc) · 4.8 KB
/
pre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import time
import torch
from torch import nn
from torch import optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from model import *
def evaluate(data_iter, args):
model.eval()
total_loss = 0
with torch.no_grad():
for data, label in data_iter:
targets = label[:, args.property_n:args.property_n + 1]
inputs = data[:, 1:-1]
if torch.cuda.is_available()==True:
targets=targets.cuda()
inputs=inputs.cuda()
outputs = model(inputs)
loss = criterion(outputs, targets)
total_loss += loss.item()
# print(model.decoder.atten,outputs,targets)
return total_loss / len(data_iter)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Prediction Modeling')
parser.add_argument('--property_n', type=int, default=0,
help='the numerical order of property (default: 0,1,2,3,4,5)')
parser.add_argument('--batch_size', type=int, default=32, metavar='N',
help='batch size (default: 32)')
parser.add_argument('--dropout', type=float, default=0.2,
help='dropout applied to layers (default: 0.2)')
parser.add_argument('--emb_dropout', type=float, default=0.1,
help='dropout applied to the embedded layer (default: 0.1)')
parser.add_argument('--epochs', type=int, default=200,
help='upper epoch limit (default: 200)')
parser.add_argument('--ksize', type=int, default=3,
help='kernel size (default: 3)')
parser.add_argument('--emsize', type=int, default=32,
help='size of word embeddings (default: 32)')
parser.add_argument('--levels', type=int, default=5,
help='# of levels (default: 5)')
parser.add_argument('--lr', type=float, default=0.001,
help='initial learning rate (default: 0.001)')
parser.add_argument('--nhid', type=int, default=256,
help='number of hidden units per layer (default: 256)')
parser.add_argument('--optim', type=str, default='Adam',
help='optimizer type (default: Adam)')
parser.add_argument('--save_name', type=str, default='pre.pt',
help='the name of save model')
args = parser.parse_args()
print(args)
torch.manual_seed(1024)
word2idx, idx2word = torch.load("data/opv_dic.pt")
train_data, val_data, test_data = torch.load("data/opv_data.pt")
train_iter = DataLoader(train_data, args.batch_size, shuffle=True)
val_iter = DataLoader(val_data, args.batch_size, shuffle=False)
test_iter = DataLoader(test_data, 1, shuffle=False)
n_words = len(word2idx)
model = PRE(args.emsize, n_words, 1, hid_size=args.nhid, n_levels=args.levels,
kernel_size=args.ksize, emb_dropout=args.emb_dropout, dropout=args.dropout)
if torch.cuda.is_available()==True:
model.cuda()
criterion = nn.MSELoss()
optimizer = getattr(optim, args.optim)(model.parameters(), lr=args.lr)
scheduler = ReduceLROnPlateau(optimizer, 'min')
best_vloss = 100
try:
for epoch in range(1, args.epochs + 1):
start_time = time.time()
model.train()
total_loss = 0
for data, label in train_iter:
targets = label[:, args.property_n:args.property_n + 1]
inputs = data[:, 1:-1]
if torch.cuda.is_available()==True:
targets=targets.cuda()
inputs=inputs.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
total_loss += loss.item()
print('| epoch: {:3d} | train loss: {:5.6f} |'.format(epoch, total_loss / len(train_iter)))
val_loss = evaluate(val_iter, args)
scheduler.step(val_loss)
print('-' * 89)
print('| time: {:5.4f}s | valid loss: {:5.6f} |'.format((time.time() - start_time), val_loss))
print('-' * 89)
if val_loss < best_vloss:
print('Save model!\n')
torch.save(model, 'results/saved_models/' + str(args.levels) + str(args.property_n) + args.save_name)
best_vloss = val_loss
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
model = torch.load('results/saved_models/' + str(args.levels) + str(args.property_n) + args.save_name)
criterion = nn.L1Loss()
val_L1_loss = evaluate(val_iter, args)
test_L1_loss = evaluate(test_iter, args)
print(val_L1_loss,test_L1_loss)