-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample.py
179 lines (137 loc) · 5.83 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import torch.nn.functional as F
from rdkit import Chem,DataStructs
from rdkit.Chem import AllChem
import pandas as pd
from utils import process,featurize_atoms
from dgllife.utils import smiles_to_bigraph
def tok(ms, word2idx):
# smiles to tensor
all_ids = []
all_smiles = process(ms)
max_length = max([len(smiles) for smiles in all_smiles])+1
for smiles in all_smiles:
ids = []
for word in smiles:
if word in word2idx:
ids += [word2idx[word]]
while len(ids) < max_length:
ids += [0]
all_ids.append(ids)
return torch.LongTensor(all_ids)
def ts2sms(tensors,idx2word):
# tensors to smiles
smiles=[]
idxs=[]
for i in range(len(tensors)):
sms=''
for t in tensors[i]:
if t!=0:
sms += idx2word[t]
else:
break
if bool(Chem.MolFromSmiles(sms)):
smiles+=[sms]
idxs+=[i]
return smiles,idxs
def sample(gen_model,labels,batch_size,device):
# generate molecules with labels
num_samples = labels.size(0)
samples = torch.zeros(num_samples, 160).long().to(device)
with torch.no_grad():
gen_model.eval()
for i in range(0,num_samples,batch_size):
targets = labels[i:min(i+batch_size,num_samples)].to(device)
inputs = torch.ones(targets.size(0), 1, dtype=torch.long).to(device)
for j in range(160):
out = gen_model(inputs,targets)
final_outputs = out.contiguous()[:,-1,:]
next_tokens = torch.multinomial(F.softmax(final_outputs,dim=-1), 1)
inputs = torch.cat((inputs,next_tokens),-1)
if torch.sum(next_tokens).item()==0:
break
samples[i:min(i+batch_size,num_samples),:(inputs.size(1)-1)] = inputs[:,1:]
return samples
def frag_sample(gen_model,ini_frag,labels,batch_size,word2idx,device):
#generate molecules with initial fragment and labels
num_samples = labels.size(0)
samples = torch.zeros(num_samples, 160).long().to(device)
with torch.no_grad():
gen_model.eval()
for i in range(0,num_samples,batch_size):
targets = labels[i:min(i+batch_size,num_samples)].to(device)
input0 = tok([ini_frag]*targets.size(0), word2idx)[:,:-1]
inputs = torch.cat((torch.ones(targets.size(0), 1, dtype=torch.long),input0),dim=-1).to(device)
for j in range(160-inputs.size(1)):
out = gen_model(inputs,targets)
final_outputs = out.contiguous()[:,-1,:]
next_tokens = torch.multinomial(F.softmax(final_outputs,dim=-1), 1)
inputs = torch.cat((inputs,next_tokens),-1)
if torch.sum(next_tokens).item()==0:
break
samples[i:min(i+batch_size,num_samples),:(inputs.size(1)-1)] = inputs[:,1:]
return samples
def get_prop(smiles_list,all_mols,df):
# get the property from source dataset
homo_list=[]
lumo_list=[]
for smiles in smiles_list:
if smiles in all_mols:
j=all_mols.index(smiles)
homo_list+=[df.iloc[j]['homo']]
lumo_list+=[df.iloc[j]['lumo']]
else:
homo_list+=[None]
lumo_list+=[None]
return homo_list,lumo_list
def get_simi(sms,all_sms):
# the max similarity between one and dataset
simis=[]
all_mols = [Chem.MolFromSmiles(smi) for smi in all_sms]
all_fps = [AllChem.GetMorganFingerprint(mol,2) for mol in all_mols]
for sm in sms:
fp=AllChem.GetMorganFingerprint(Chem.MolFromSmiles(sm),2)
simis+=[max(DataStructs.BulkDiceSimilarity(fp, all_fps))]
return simis
def run_pre(smiles_list,model_path,device):
#run for predicting HOMO and LUMO
model = torch.load(model_path, map_location=device)
model.eval()
outs_h=[]
outs_l=[]
with torch.no_grad():
for smiles in smiles_list:
bg=smiles_to_bigraph(smiles,add_self_loop=True,
node_featurizer=featurize_atoms,
edge_featurizer=None)
node_feats = bg.ndata.pop('atomic')
# edge_feats = bg.edata.pop('e').to(device)
outs = model(bg.to(device), node_feats.to(device))
outs_h += outs[:,0].view(-1).detach().cpu().numpy().tolist()
outs_l += outs[:,1].view(-1).detach().cpu().numpy().tolist()
return outs_h,outs_l
if __name__ == "__main__":
Labels = torch.rand([4000,2])
Labels[:,0] = Labels[:,0]*1.8-7
Labels[:,1] = Labels[:,1]*1.8-4
Labels0=torch.linspace(-7.6,-4.6,16).repeat(1,16).T
Labels1=-torch.linspace(1.6,4.6,16).repeat(16,1).T.reshape(256,1)
Labels=torch.cat([Labels0,Labels1],dim=-1)
df = pd.DataFrame({'homo_tar':Labels[:,0].tolist(),'lumo_tar':Labels[:,1].tolist()})
df0 = pd.read_csv('data/opv.csv',index_col=0)
df0 = df0[(df0['lumo']-df0['homo'])>0].reset_index(drop=True)
all_sms = df0['smiles'].tolist()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
gen = torch.load("results/cg_hl.pt")
word2idx, idx2word = torch.load("data/opv_dic.pt")
count=10
for i in range(count):
gen_samples = sample(gen, Labels, batch_size=64, device=device)
# gen_samples = frag_sample(gen, "N#Cc1c(cc2c(c1)ccs2)", Labels, batch_size=64, word2idx=word2idx, device=device)
sam_smiles,idxs = ts2sms(gen_samples,idx2word)
homo_pre, lumo_pre = run_pre(sam_smiles,"results/pre_hl.pt",device=device)
df.loc[idxs,'smiles'+str(i)]=sam_smiles
df.loc[idxs,'homo_pre'+str(i)]=homo_pre
df.loc[idxs,'lumo_pre'+str(i)]=lumo_pre
df.loc[idxs,'similarity'+str(i)]=get_simi(sam_smiles,all_sms)
df.to_csv("results/sample.csv")