-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpre.py
135 lines (105 loc) · 4.77 KB
/
pre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
import config
import time
import torch
import torch.optim as optim
import torch.nn.functional as F
from model import PRE
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import dgl
def train(train_iter):
model.train()
total_loss = 0
for data in train_iter:
smiles, bg, labels, masks = data
bg, labels, masks = bg.to(device), labels.to(device), masks.to(device)
node_feats = bg.ndata.pop('atomic')
# edge_feats = bg.edata.pop('e').to(device)
optimizer.zero_grad()
outputs = model(bg, node_feats.to(device))
loss = (F.mse_loss(outputs,labels[:,args.property_n])* (masks != 0).float()).mean()
loss.backward()
total_loss += loss.item()
optimizer.step()
return total_loss/len(train_iter)
def evaluate(data_iter):
with torch.no_grad():
model.eval()
total_loss = 0
for data in data_iter:
smiles, bg, labels, masks = data
bg, labels, masks = bg.to(device), labels.to(device), masks.to(device)
node_feats = bg.ndata.pop('atomic')
# edge_feats = bg.edata.pop('e').to(device)
outputs = model(bg, node_feats.to(device))
loss = (F.mse_loss(outputs,labels[:,args.property_n])* (masks != 0).float()).mean()
total_loss += loss.item()
return total_loss/len(data_iter)
def test(data_iter):
with torch.no_grad():
model.eval()
total_mae_loss0 = 0
total_mae_loss1 = 0
total_mse_loss0 = 0
total_mse_loss1 = 0
for data in data_iter:
smiles, bg, labels, masks = data
bg, labels, masks = bg.to(device), labels.to(device), masks.to(device)
node_feats = bg.ndata.pop('atomic')
# edge_feats = bg.edata.pop('e').to(device)
outputs=model(bg, node_feats.to(device))
total_mae_loss0 +=(outputs[:,0] - labels[:,0]).abs().mean().item()
total_mae_loss1 +=(outputs[:,1] - labels[:,1]).abs().mean().item()
total_mse_loss0 += F.mse_loss(outputs[:,0],labels[:,0]).item()
total_mse_loss1 += F.mse_loss(outputs[:,1],labels[:,1]).item()
return total_mae_loss0/len(data_iter),total_mae_loss1/len(data_iter),total_mse_loss0/len(data_iter),total_mse_loss1/len(data_iter)
def collate_molgraphs(data):
smiles, graphs, labels, masks = map(list, zip(*data))
bg = dgl.batch(graphs)
bg.set_n_initializer(dgl.init.zero_initializer)
bg.set_e_initializer(dgl.init.zero_initializer)
labels = torch.stack(labels, dim=0)
if masks is None:
masks = torch.ones(labels.shape)
else:
masks = torch.stack(masks, dim=0)
return smiles, bg, labels, masks
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Prediction Modeling',parents=[config.parser])
parser.add_argument('--save_name', type=str, default='pre_hl.pt',help='the name of save model')
args = parser.parse_args()
print(args)
torch.manual_seed(1024)
torch.cuda.manual_seed(1024)
train_set, val_set, test_set = torch.load("data/opv_graph.pt")
train_iter = DataLoader(train_set, args.batch_size, shuffle=True, collate_fn=collate_molgraphs)
val_iter = DataLoader(val_set, args.batch_size, shuffle=False, collate_fn=collate_molgraphs)
test_iter = DataLoader(test_set, args.batch_size, shuffle=False, collate_fn=collate_molgraphs)
model = PRE(h_size=args.h_size,emb_h=args.emb_h,dim=args.hid_size)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
optimizer = getattr(optim, args.optim)(model.parameters(), lr=args.lr)
best_vloss =10
writer = SummaryWriter()
for epoch in range(1,args.epochs+1):
start_time = time.time()
train_loss = train(train_iter)
val_loss = evaluate(val_iter)
print('-' * 80)
print('epoch: {:4d} | time: {:4.4f}s | train loss: {:4.6f} | valid loss: {:4.6f}'.format
(epoch, time.time() - start_time, train_loss, val_loss))
writer.add_scalar('Train Loss', train_loss, epoch)
writer.add_scalar('Valid Loss', val_loss, epoch)
if val_loss < best_vloss:
print('-' * 80)
print('Save model!')
torch.save(model, 'results/'+ args.save_name)
best_vloss = val_loss
writer.close()
model = torch.load("results/"+args.save_name)
test_mae_loss0,test_mae_loss1,test_mse_loss0,test_mse_loss1=test(test_iter)
print('=' * 40)
print('End of training | HOMO MAE {:4.6f} | HOMO RMSE {:4.6f}'.format(test_mae_loss0,test_mse_loss0**0.5))
print('End of training | LUMO MAE {:4.6f} | LUMO RMSE {:4.6f}'.format(test_mae_loss1,test_mse_loss1**0.5))
print('=' * 40)