-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
476 lines (364 loc) · 20 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
"""
Main training code. Loads data, builds the model, trains, tests, evaluates, writes outputs, etc.
"""
import torch
from torch import optim
from torch.utils.data import DataLoader
from datasets import MimicDataset
from datasets import collate
import argparse
import os
import numpy as np
import sys
import time
import json
from tqdm import tqdm
from collections import defaultdict
#from logger import Tensorboard
import datasets
import evaluation
import persistence
import models
num_workers = 0
def main(args, reporter=None):
start = time.time()
args, model, optimizer, params, dicts = init(args)
epochs_trained, metrics_hist_test = train_epochs(args, model, optimizer, params, dicts)
elapsed = round(time.time() - start)
m, s = divmod(elapsed, 60)
h, m = divmod(m, 60)
print("TOTAL ELAPSED TIME FOR {} MODEL AND {} EPOCHS: {:d}:{:02d}:{:02d}".format(args.model, epochs_trained, h, m, s))
return metrics_hist_test
def init(args):
"""
Load data, build model, create optimizer, create vars to hold metrics, etc.
"""
#load vocab and other lookups
print("loading lookups...")
dicts = datasets.load_lookups(args, hier=args.hier)
model, optimizer = init_model(args, dicts)
print(model)
params = vars(args)
return args, model, optimizer, params, dicts
def train_epochs(args, model, optimizer, params, dicts):
"""
Main loop. does train and test
"""
metrics_hist_train = defaultdict(list)
metrics_hist_dev = defaultdict(list)
metrics_hist_test = defaultdict(list)
if args.resume:
metrics_file = os.path.join(os.path.dirname(os.path.abspath(args.resume)), 'metrics.json')
if os.path.exists(metrics_file):
with open(metrics_file, 'r') as metrics_fp:
metrics = json.load(metrics_fp)
metrics_hist_train.update({k.replace('_train', '') : v for k, v in metrics.items() if k.endswith('_train')})
metrics_hist_dev.update({k.replace('_dev', '') : v for k, v in metrics.items() if k.endswith('_dev')})
metrics_hist_test.update({k.replace('_test', '') : v for k, v in metrics.items() if k.endswith('_test')})
test_only = args.test_model is not None
num_labels_fine = len(dicts['ind2c'])
num_labels_coarse = len(dicts['ind2c_coarse'])
epoch = 0 if args.resume is None else args.epoch
if not test_only:
dataset_train = MimicDataset(args.data_path, dicts, num_labels_fine, num_labels_coarse, args.max_len)
dataset_dev = MimicDataset(args.data_path.replace('train', 'dev'), dicts, num_labels_fine, num_labels_coarse, args.max_len)
if args.resume is None:
model_dir = os.path.join(args.models_dir, '_'.join([args.model, time.strftime('%Y-%m-%d_%H:%M:%S')]))
os.mkdir(model_dir)
else:
model_dir = os.path.dirname(os.path.abspath(args.resume))
else:
model_dir = os.path.dirname(os.path.abspath(args.test_model))
#tensorboard = Tensorboard(model_dir)
#train for n_epochs unless criterion metric does not improve for [patience] epochs
for epoch in range(epoch, args.n_epochs if not test_only else 0):
losses = train(model, optimizer, args.Y, epoch, args.batch_size, args.embed_desc, dataset_train, args.shuffle, args.gpu, dicts)
loss = np.mean(losses)
metrics_train = {'loss': loss}
fold ='dev'
#evaluate on dev
with torch.no_grad():
metrics_dev, _, _, _ = test(model, args.Y, epoch, dataset_dev, args.batch_size, args.embed_desc, fold, args.gpu, dicts, model_dir)
for name, val in metrics_train.items():
#tensorboard.log_scalar('%s_train' % (name), val, epoch)
metrics_hist_train[name].append(metrics_train[name])
metrics_hist_train.update({'epochs': epoch+1})
for name, val in metrics_dev.items():
#tensorboard.log_scalar('%s_dev' % (name), val, epoch)
metrics_hist_dev[name].append(metrics_dev[name])
metrics_hist_all = (metrics_hist_train, metrics_hist_dev, None)
#save metrics, model, optimizer state, params
persistence.save_everything(args, dicts, metrics_hist_all, model, optimizer, model_dir, params, args.criterion, evaluate=False, test_only=False)
if args.criterion is not None:
if early_stop(metrics_hist_dev, args.criterion, args.patience):
#stop training, evaluate on test set and then stop the script
print('{} hasn\'t improved in {} epochs, early stopping...'.format(args.criterion, args.patience))
break
fold = 'test'
print("\nevaluating on test")
dataset_train = None
dataset_dev = None
del dataset_train, dataset_dev
if not test_only:
model_best_sd = torch.load(os.path.join(model_dir, 'model_best_{}.pth'.format(args.criterion)))
model.load_state_dict(model_best_sd)
if args.gpu:
model.cuda()
dataset_test = MimicDataset(args.data_path.replace('train', 'test'), dicts, num_labels_fine, num_labels_coarse, args.max_len)
with torch.no_grad():
metrics_test, metrics_codes, metrics_inst, hadm_ids = test(model, args.Y, epoch, dataset_test, args.batch_size, args.embed_desc,fold, args.gpu, dicts, model_dir)
for name, val in metrics_test.items():
#if not test_only:
# tensorboard.log_scalar('%s_test' % (name), val, epoch)
metrics_hist_test[name].append(metrics_test[name])
metrics_hist_all = (metrics_hist_train, metrics_hist_dev, metrics_hist_test)
#tensorboard.close()
#save metrics, model, params
persistence.save_everything(args, dicts, metrics_hist_all, model, optimizer, model_dir, params, args.criterion, metrics_codes=metrics_codes, metrics_inst=metrics_inst, hadm_ids=hadm_ids, evaluate=True, test_only=test_only)
return epoch+1, metrics_hist_test
def early_stop(metrics_hist, criterion, patience):
assert len(metrics_hist[criterion]) > 0
#keep training if criterion results have all been nan so far
if np.all(np.isnan(metrics_hist[criterion])):
return False
if criterion == 'loss_dev':
return np.nanargmin(metrics_hist[criterion]) > len(metrics_hist[criterion]) - patience
else:
return np.nanargmax(metrics_hist[criterion]) < len(metrics_hist[criterion]) - patience
def train(model, optimizer, Y, epoch, batch_size, embed_desc, dataset, shuffle, gpu, dicts):
"""
Training loop.
output: losses for each example for this iteration
"""
print("EPOCH %d" % epoch)
#accumulation_steps = batch_size/8
#assert batch_size % 8 == 0
#optimizer.zero_grad()
#batch_size = 8
losses = []
ind2w, w2ind, ind2c, c2ind, desc = dicts['ind2w'], dicts['w2ind'], dicts['ind2c'], dicts['c2ind'], dicts['desc']
model.train()
gen = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, collate_fn=collate, pin_memory=True)
desc_data = desc
if embed_desc and gpu:
desc_data = desc_data.cuda()
t = tqdm(gen, total=len(gen), ncols=0, file=sys.stdout)
for batch_idx, tup in enumerate(t):
data, target, target_coarse, _, _ = tup
if gpu:
data, target, target_coarse = data.cuda(), target.cuda(), target_coarse.cuda()
seq_length = data.size()[1]
optimizer.zero_grad()
if model.hier:
_, loss, _ = model(data, target, target_coarse, desc_data=desc_data)
else:
_, loss, _ = model(data, target, desc_data=desc_data)
del data, target, target_coarse
#loss = loss / accumulation_steps
loss.backward()
losses.append(loss.item())
del loss
#if (batch_idx+1) % accumulation_steps == 0 or batch_size < 16:
optimizer.step()
# optimizer.zero_grad()
t.set_postfix(batch_size=batch_size, seq_length=seq_length, loss=np.mean(losses))
return losses
def test(model, Y, epoch, dataset, batch_size, embed_desc, fold, gpu, dicts, model_dir):
"""
Testing loop.
Returns metrics
"""
print('file for evaluation: %s' % fold)
docs, attention, y, yhat, yhat_raw, hids, losses = [], [], [], [], [], [], []
y_coarse, yhat_coarse, yhat_coarse_raw = [], [], []
ind2w, w2ind, ind2c, c2ind, desc = dicts['ind2w'], dicts['w2ind'], dicts['ind2c'], dicts['c2ind'], dicts['desc']
model.eval()
gen = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, collate_fn=collate)
desc_data = desc
if embed_desc and gpu:
desc_data = desc_data.cuda()
t = tqdm(gen, total=len(gen), ncols=0, file=sys.stdout)
for batch_idx, tup in enumerate(t):
data, target, target_coarse, hadm_ids, data_text = tup
if gpu:
data, target, target_coarse = data.cuda(), target.cuda(), target_coarse.cuda()
model.zero_grad()
if model.hier:
output, loss, alpha = model(data, target, target_coarse, desc_data=desc_data)
else:
output, loss, alpha = model(data, target, desc_data=desc_data)
if model.hier:
output, output_coarse = output
output_coarse = output_coarse.data.cpu().numpy()
alpha, alpha_coarse = alpha
else:
output_coarse = np.zeros([len(output), len(dicts['ind2c_coarse'])])
for i, y_hat_raw_ in enumerate(output.data.cpu().numpy()):
if len(np.nonzero(np.round(y_hat_raw_))) == 0:
continue
codes = [str(dicts['ind2c'][ind]) for ind in np.nonzero(np.round(y_hat_raw_))[0]]
codes_coarse = set(str(code).split('.')[0] for code in codes)
codes_coarse_idx = [dicts['c2ind_coarse'][code_coarse] for code_coarse in codes_coarse]
output_coarse[i, codes_coarse_idx] = 1
target_coarse_data = target_coarse.data.cpu().numpy()
y_coarse.append(target_coarse_data)
yhat_coarse_raw.append(output_coarse)
yhat_coarse.append(np.round(output_coarse))
losses.append(loss.item())
target_data = target.data.cpu().numpy()
del data, loss
#if fold == 'test':
##alpha, _ = torch.max(torch.round(output).unsqueeze(-1).expand_as(alpha) * alpha, 1)
##alpha = (torch.round(output).byte() | target.byte()).unsqueeze(-1).expand_as(alpha).type('torch.cuda.FloatTensor') * alpha
# alpha = [a for a in [a_m for a_m in alpha.data.cpu().numpy()]]
#else:
# alpha = []
del target
output = output.data.cpu().numpy()
#save predictions, target, hadm ids
yhat_raw.append(output)
yhat.append(np.round(output))
y.append(target_data)
hids.extend(hadm_ids)
docs.extend(data_text)
attention.extend(alpha[:,[dicts['c2ind'][c] for c in persistence.get_codes()]].cpu())
t.set_postfix(loss=np.mean(losses))
level = ''
k = 5 if len(ind2c) == 50 else [8,15]
y_coarse = np.concatenate(y_coarse, axis=0)
yhat_coarse = np.concatenate(yhat_coarse, axis=0)
yhat_coarse_raw = np.concatenate(yhat_coarse_raw, axis=0)
metrics_coarse, _, _ = evaluation.all_metrics(yhat_coarse, y_coarse, k=k, yhat_raw=yhat_coarse_raw, level='coarse')
evaluation.print_metrics(metrics_coarse, level='coarse')
y = np.concatenate(y, axis=0)
yhat = np.concatenate(yhat, axis=0)
yhat_raw = np.concatenate(yhat_raw, axis=0)
#get metrics
metrics, metrics_codes, metrics_inst = evaluation.all_metrics(yhat, y, k=k, yhat_raw=yhat_raw, level='fine')
evaluation.print_metrics(metrics, level='fine')
metrics['loss'] = np.mean(losses)
metrics.update(metrics_coarse)
#write the predictions
if fold == 'test':
persistence.write_preds(hids, docs, attention, y, yhat, yhat_raw, metrics_inst, model_dir, fold, ind2c, c2ind, dicts['desc_plain'])
return metrics, metrics_codes, metrics_inst, hids
def init_model(args, dicts):
"""
Use args to initialize the appropriate model
"""
assert not (args.test_model is not None and args.resume is not None)
Y = len(dicts['ind2c'])
Y_coarse = len(dicts['ind2c_coarse']) if args.hier else None
if args.embed_file and not (args.test_model or args.resume):
print("loading pretrained embeddings (freeze={0}, normalize={1})...".format(args.embed_freeze, args.embed_normalize))
word_embeddings_matrix = load_embeddings(args.embed_file, dicts['ind2w'], args.dims[0], args.embed_normalize)
else:
word_embeddings_matrix = None
vocab_size = len(dicts['ind2w'])
if args.model == "dummy":
model = models.DummyModel(Y, dicts, args.gpu)
elif args.model == "conv_dilated":
model = models.ConvDilated(Y, args.dims, args.filter_size, args.dilation, word_embeddings_matrix, args.gpu, vocab_size,
embed_freeze=args.embed_freeze, dropout=args.dropout,
hier=args.hier, Y_coarse=Y_coarse, fine2coarse=dicts['fine2coarse'],
embed_desc=args.embed_desc)
elif args.model == "conv_attn":
model = models.ConvAttnPool(Y, args.dims, args.filter_size, word_embeddings_matrix, args.gpu, vocab_size,
embed_freeze=args.embed_freeze, dropout=args.dropout,
hier=args.hier, Y_coarse=Y_coarse, fine2coarse=dicts['fine2coarse'],
embed_desc=args.embed_desc, layer_norm=args.layer_norm)
if args.test_model:
sd = torch.load(os.path.abspath(args.test_model))
model.load_state_dict(sd)
if args.resume:
sd = torch.load(os.path.abspath(args.resume))
model.load_state_dict(sd)
if args.gpu:
model.cuda()
if not args.test_model and not args.model == 'dummy':
optimizer = optim.Adam(model.parameters(), weight_decay=args.weight_decay, lr=args.lr)
if args.resume:
model_dir = os.path.dirname(os.path.abspath(args.resume))
model_file = os.path.basename(os.path.abspath(args.resume))
sd_opt = torch.load(os.path.join(model_dir, model_file.replace('model', 'optim')))
args.epoch = sd_opt.pop('epoch')
optimizer.load_state_dict(sd_opt)
else:
optimizer = None
return model, optimizer
def load_embeddings(embed_file, ind2w, embed_size, embed_normalize):
word_embeddings = {}
vocab_size = len(ind2w)
with open(embed_file) as ef:
for line in ef:
line = line.rstrip().split()
idx = len(line) - embed_size
word = '_'.join(line[:idx]).lower().strip()
vec = np.array(line[idx:]).astype(np.float)
word_embeddings[word] = vec
W = np.zeros((vocab_size+2, embed_size))
words_found = 0
for ind, word in ind2w.items():
try:
W[ind] = word_embeddings[word]
words_found += 1
except KeyError:
W[ind] = np.random.randn(1, embed_size)
if embed_normalize:
W[ind] = W[ind] / (np.linalg.norm(W[ind]) + 1e-6)
W[vocab_size-1] = np.random.randn(1, embed_size)
if embed_normalize:
W[vocab_size-1] = W[vocab_size-1] / (np.linalg.norm(W[vocab_size-1]) + 1e-6)
print('vocabulary coverage: {}'.format(words_found/vocab_size))
return W
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="train a neural network on some clinical documents")
parser.add_argument("data_path", type=str,
help="path to a file containing train data. dev/test splits assumed to have same name format with 'train' replaced by 'dev' and 'test'")
parser.add_argument("vocab", type=str, help="path to a file holding vocab word list for discretizing words")
parser.add_argument("Y", type=str, help="size of label space")
parser.add_argument("model", type=str, choices=["conv_dilated", "conv_attn", "dummy"], help="model")
parser.add_argument("dims", type=lambda s: [int(dim) for dim in s.split(',')], help="layers dimensions")
parser.add_argument("--n-epochs", type=int, required=True, dest="n_epochs", help="number of epochs to train")
parser.add_argument("--embed-file", type=str, required=False, dest="embed_file",
help="path to a file holding pre-trained embeddings")
parser.add_argument("--embed-freeze", action='store_true', dest="embed_freeze",
help="optional flag to make word embeddings trainable")
parser.add_argument("--embed-normalize", action='store_true', dest="embed_normalize",
help="optional flag to normalize word embeddings")
parser.add_argument("--shuffle", action='store_true', dest="shuffle",
help="optional flag to shuffle training dataset at each epoch")
parser.add_argument("--filter-size", type=int, required=False, dest="filter_size", default=5,
help="size of convolution filter to use. (default: 5)")
parser.add_argument("--dilation", dest="dilation", type=lambda s: [int(dil) for dil in s.split(',')], required=False, default=[1],
help="optional specification of dilation (default: 1)")
parser.add_argument("--weight-decay", type=float, required=False, dest="weight_decay", default=0,
help="coefficient for penalizing l2 norm of model weights (default: 0)")
parser.add_argument("--lr", type=float, required=False, dest="lr", default=1e-3,
help="initial learning rate for Adam optimizer (default=1e-3)")
parser.add_argument("--batch-size", type=int, required=False, dest="batch_size", default=16,
help="size of training batches")
parser.add_argument("--dropout", dest="dropout", type=lambda s: [float(drop) for drop in s.split(',')], required=False, default=[0.5],
help="optional specification of dropout (default: 0.5)")
parser.add_argument("--test-model", type=str, dest="test_model", required=False, help="path to a saved model to load and evaluate")
parser.add_argument("--resume", type=str, dest="resume", required=False, help="path to a saved model to resume training")
parser.add_argument("--models-dir", type=str, dest="models_dir", required=True, help="path to saved models directory")
parser.add_argument("--data-dir", type=str, dest="data_dir", required=True, help="path to mimic data directory")
parser.add_argument("--criterion", type=str, default='f1_micro', required=False, dest="criterion",
help="which metric to use for early stopping (default: f1_micro)")
parser.add_argument("--patience", type=int, default=3, required=False,
help="how many epochs to wait for improved criterion metric before early stopping (default: 3)")
parser.add_argument("--gpu", dest="gpu", action="store_const", required=False, const=True,
help="optional flag to use GPU if available")
parser.add_argument("--max-len", type=int, required=False, dest="max_len", default=-1,
help="set maximum number of tokens per document (optional)")
parser.add_argument("--hier", action="store_true", dest="hier",
help="hierarchical predictions (defaul false)")
parser.add_argument("--embed-desc", action="store_true", dest="embed_desc")
parser.add_argument("--exclude-non-billable", action="store_true", dest="exclude_non_billable")
parser.add_argument("--include-invalid", action="store_true", dest="include_invalid")
parser.add_argument("--layer-norm", action="store_true", dest="layer_norm")
args = parser.parse_args()
command = ' '.join(['python'] + sys.argv)
args.command = command
main(args)