-
Notifications
You must be signed in to change notification settings - Fork 833
/
Copy pathargs.py
1483 lines (1374 loc) · 49.7 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding=utf-8
"""This script defines dataclasses: ModelArguments and DatasetArguments,
that contain the arguments for the model and dataset used in training.
It imports several modules, including dataclasses, field from typing, Optional from typing,
require_version from transformers.utils.versions, MODEL_FOR_CAUSAL_LM_MAPPING,
and TrainingArguments from transformers.
MODEL_CONFIG_CLASSES is assigned a list of the model config classes from
MODEL_FOR_CAUSAL_LM_MAPPING. MODEL_TYPES is assigned a tuple of the model types
extracted from the MODEL_CONFIG_CLASSES.
"""
import logging
from dataclasses import dataclass, field, fields, Field, make_dataclass
from pathlib import Path
from typing import Optional, List, Union, Dict
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TrainingArguments,
)
from transformers.utils.versions import require_version
from lmflow.utils.versioning import is_flash_attn_available
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
logger = logging.getLogger(__name__)
class OptimizerNames():
DUMMY = "dummy"
ADABELIEF = "adabelief"
ADABOUND = "adabound"
LARS = "lars"
LAMB = "lamb"
ADAMAX = "adamax"
NADAM = "nadam"
RADAM = "radam"
ADAMP = "adamp"
SGDP = "sgdp"
YOGI = "yogi"
SOPHIA = "sophia"
ADAN = "adan"
ADAM = "adam"
NOVOGRAD = "novograd"
ADADELTA = "adadelta"
ADAGRAD = "adagrad"
MUON = "muon"
ADAMW_SCHEDULE_FREE = "adamw_schedule_free"
SGD_SCHEDULE_FREE = "sgd_schedule_free"
@dataclass
class ModelArguments:
"""
Define a class ModelArguments using the dataclass decorator.
The class contains several optional parameters that can be used to configure a model.
model_name_or_path : str
a string representing the path or name of a pretrained
model checkpoint for weights initialization. If None, a model will be trained from scratch.
model_type : str
a string representing the type of model to use if training from
scratch. If not provided, a pretrained model will be used.
config_overrides : str
a string representing the default config settings to override
when training a model from scratch.
config_name : str
a string representing the name or path of the pretrained config to
use, if different from the model_name_or_path.
tokenizer_name : str
a string representing the name or path of the pretrained tokenizer
to use, if different from the model_name_or_path.
cache_dir : str
a string representing the path to the directory where pretrained models
downloaded from huggingface.co will be stored.
use_fast_tokenizer : bool
a boolean indicating whether to use a fast tokenizer (backed by the
tokenizers library) or not.
model_revision : str
a string representing the specific model version to use (can be a
branch name, tag name, or commit id).
token : Optional[str]
Necessary when accessing a private model/dataset.
torch_dtype : str
a string representing the dtype to load the model under. If auto is
passed, the dtype will be automatically derived from the model's weights.
use_ram_optimized_load : bool
a boolean indicating whether to use disk mapping when memory is not
enough.
use_int8 : bool
a boolean indicating whether to load int8 quantization for inference.
load_in_4bit : bool
whether to load the model in 4bit
model_max_length : int
The maximum length of the model.
truncation_side : str
The side on which the model should have truncation applied.
arch_type : str
Model architecture type.
padding_side : str
The side on which the tokenizer should have padding applied.
eos_padding : bool
whether to pad with eos token instead of pad token.
ignore_bias_buffers : bool
fix for DDP issues with LM bias/mask buffers - invalid scalar type,`inplace operation.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
lora_model_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The incremental model diff introduced by LoRA finetuning."
" Along with the original non-finetuned model forms the whole"
" finetuned model."
)
}
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
arch_type: Optional[str] = field(
default="decoder_only",
metadata={
"help": ("Model architecture type."),
"choices": ["decoder_only", "encoder_decoder", "text_regression", "vision_encoder_decoder"],
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: Optional[str] = field(
default=None,
metadata={
"help": ("Necessary to specify when accessing a private model/dataset.")
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether to trust remote code when loading model."
)
},
)
torch_dtype: Optional[str] = field(
default=None,
metadata={
"help": (
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
"dtype will be automatically derived from the model's weights."
),
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
use_dora: bool = field(
default=False,
metadata={"help": "Whether to dora, https://github.com/NVlabs/DoRA."},
)
use_lora: bool = field(
default=False,
metadata={"help": "Whether to lora."},
)
use_qlora: bool = field(
default=False,
metadata={"help": "Whether to use qlora."},
)
bits: int = field(
default=4,
metadata={"help": "The number of bits for quantization.",
"choices": [4, 8], },
)
quant_type: str = field(
default='nf4',
metadata={"help": "The quantization type for quantization.",
"choices": ["nf4", "fp4"], },
)
double_quant: bool = field(
default=True,
metadata={"help": "Whether to use double quantization."},
)
lora_r: int = field(
default=8,
metadata={"help": "the rank of the lora parameters. The smaller lora_r is , the fewer parameters lora has."},
)
lora_alpha: int = field(
default=32,
metadata={
"help": "Merging ratio between the fine-tuned model and the original. This is controlled by a parameter called alpha in the paper."},
)
lora_target_modules: str = field(
default=None, metadata={"help": "Model modules to apply LoRA to. Use comma to separate multiple modules."}
)
lora_dropout: float = field(
default=0.1,
metadata={"help": "The dropout rate in lora.linear."},
)
save_aggregated_lora: bool = field(
default=False,
metadata={"help": "Whether to save aggregated lora."},
)
use_ram_optimized_load: bool = field(
default=True,
metadata={"help": "Whether use disk mapping when memory is not enough."}
)
use_flash_attention: bool = field(
default=False,
metadata={
"help": (
"whether use flash attention layer to reduce GPU memory with"
" higher time cost."
)
}
)
truncate_to_model_max_length: bool = field(
default=True,
metadata={
"help": (
"whether truncate the dataset to model max length."
)
}
)
do_rope_scaling: bool = field(
default=False,
metadata={
"help": (
"whether do ROPE scaling for llama model."
"Linear_scaling credits to the Reddit user /u/kaiokendev."
"https://arxiv.org/abs/2306.15595"
"NTK_scaling credits to the Reddit users /u/bloc97 and /u/emozilla."
"https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/"
)
}
)
rope_pi_ratio: int = field(
default=1,
metadata={
"help": (
"the ratio of pi in RoPE scaling."
)
}
)
rope_ntk_ratio: int = field(
default=1,
metadata={
"help": (
"the ratio of NTK in RoPE scaling."
)
}
)
use_int8: bool = field(
default=False,
metadata={"help": "whether to load int8 quantization for inference"}
)
load_in_4bit: Optional[bool] = field(
default=True,
metadata={
"help": "whether to load the model in 4bit"
},
)
model_max_length: Optional[int] = field(
default=None,
metadata={"help": (
"The maximum length of the model. When not specified, "
"will follow the model's default max length. (i.e., tokenizer.model_max_length)")
},
)
truncation_side: str = field(
default=None,
metadata={
"help": (
"The side on which the tokenizer should have truncation applied. "
"When not specified, will follow the tokenizer's default truncation strategy. "
"(i.e., tokenizer.truncation_side)"),
"choices": [None, "left", "right"],
},
)
padding_side: str = field(
default='right',
metadata={
"help": (
"The side on which the tokenizer should have padding applied. "
"LMFlow uses right padding by default. When set to `auto`, will "
"use padding_side from tokenizer.padding_side."),
"choices": ["right", "left", "auto"],
}
)
eos_padding: Optional[bool] = field(
default=False,
metadata={"help": "whether to pad with eos token"}
)
ignore_bias_buffers: Optional[bool] = field(
default=False,
metadata={
# debug argument for distributed training
"help": "fix for DDP issues with LM bias/mask buffers - invalid scalar type,`inplace operation. See"
"https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992"
},
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
if self.use_qlora:
if not self.use_lora:
logger.warning("use_qlora is set to True, but use_lora is not set to True. Setting use_lora to True.")
self.use_lora = True
if self.use_flash_attention:
if not is_flash_attn_available():
self.use_flash_attention = False
logger.warning("Flash attention is not available in the current environment. Disabling flash attention.")
if self.lora_target_modules is not None:
self.lora_target_modules: List[str] = split_args(self.lora_target_modules)
@dataclass
class VisModelArguments(ModelArguments):
low_resource: Optional[bool] = field(
default=False,
metadata={
"help": "Use 8 bit and float16 when loading llm"
}
)
custom_model: bool = field(
default=False,
metadata={"help": "flag for the model from huggingface or not"}
)
pretrained_language_projection_path: str = field(
default=None,
metadata={"help": "path for model pretrained_language_projection_path"}
)
custom_vision_model: bool = field(
default=False,
metadata={"help": "flag for the model from huggingface or not"}
)
image_encoder_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The name or path of the image encoder to use."
)
},
)
qformer_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"llm model in multi-modality model"
)
},
)
llm_model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"llm model in multi-modality model"
)
},
)
use_prompt_cache: bool = field(
default=False,
metadata={"help": "Whether to use prompt cache."},
)
prompt_cache_path: Optional[str] = field(
default=None,
metadata={"help": "Path to prompt cache."},
)
llava_loading: Optional[bool] = field(
default=False,
metadata={"help": "Whether to load module by module from pretrained model."},
)
with_qformer: Optional[bool] = field(
default=False,
metadata={"help": "Whether to use qformer."},
)
vision_select_layer: Optional[int] = field(
default=-2,
metadata={"help": "Which layer to select in vision model."},
)
llava_pretrain_model_path: Optional[str] = field(
default=None,
metadata={"help": "Path to llava pretrained model."},
)
save_pretrain_model_path: Optional[str] = field(
default=None,
metadata={"help": "Path to pretrained model."},
)
@dataclass
class DatasetArguments:
"""
Define a class DatasetArguments using the dataclass decorator.
The class contains several optional parameters that can be used to configure a dataset for a language model.
dataset_path : str
a string representing the path of the dataset to use.
dataset_name : str
a string representing the name of the dataset to use. The default value is "customized".
is_custom_dataset : bool
a boolean indicating whether to use custom data. The default value is False.
customized_cache_dir : str
a string representing the path to the directory where customized dataset caches will be stored.
dataset_config_name : str
a string representing the configuration name of the dataset to use (via the datasets library).
train_file : str
a string representing the path to the input training data file (a text file).
validation_file : str
a string representing the path to the input evaluation data file to evaluate the perplexity on (a text file).
max_train_samples : int
an integer indicating the maximum number of training examples to use for debugging or quicker training.
If set, the training dataset will be truncated to this number.
max_eval_samples: int
an integer indicating the maximum number of evaluation examples to use for debugging or quicker training.
If set, the evaluation dataset will be truncated to this number.
streaming : bool
a boolean indicating whether to enable streaming mode.
block_size: int
an integer indicating the optional input sequence length after tokenization. The training dataset will be
truncated in blocks of this size for training.
train_on_prompt: bool
a boolean indicating whether to train on prompt for conversation datasets such as ShareGPT.
conversation_template: str
a string representing the template for conversation datasets.
dataset_cache_dir: str
a string representing the path to the dataset cache directory. Useful when the default cache dir
(`~/.cache/huggingface/datasets`) has limited space.
The class also includes some additional parameters that can be used to configure the dataset further, such as `overwrite_cache`,
`validation_split_percentage`, `preprocessing_num_workers`, `disable_group_texts`, `demo_example_in_prompt`, `explanation_in_prompt`,
`keep_linebreaks`, and `prompt_structure`.
The field function is used to set default values and provide help messages for each parameter. The Optional type hint is
used to indicate that a parameter is optional. The metadata argument is used to provide additional information about
each parameter, such as a help message.
"""
dataset_path: Optional[str] = field(
default=None, metadata={"help": "The path of the dataset to use."}
)
dataset_name: Optional[str] = field(
default="customized", metadata={"help": "Should be \"customized\""}
)
is_custom_dataset: Optional[bool] = field(
default=False, metadata={"help": "whether to use custom data"}
)
customized_cache_dir: Optional[str] = field(
default=".cache/llm-ft/datasets",
metadata={"help": "Where do you want to store the customized dataset caches"},
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=1e10,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
block_size: Optional[int] = field(
default=None,
metadata={
"help": (
"Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
group_texts_batch_size: int = field(
default=1000,
metadata={
"help": (
"Number of samples that will be grouped together to go though"
" `group_texts` operation. See `--disable_group_texts` for"
" detailed explanation of this operation."
)
}
)
disable_group_texts: bool = field(
default=True,
metadata={
"help": (
"Whether we disable group of original samples together to"
" generate sample sequences of length `block_size`"
" By Default, it is True, which means the long samples"
" are truncated to `block_size` tokens"
" and short samples are padded to `block_size` tokens."
" If set to False, we group every 1000 tokenized"
" sequences together, divide them into"
" [{total_num_tokens} / {block_size}] sequences,"
" each with `block_size` tokens"
" (the remaining tokens are ommited."
" This group text behavior is useful"
" for continual pretrain or pretrain."
)
},
)
keep_linebreaks: bool = field(
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "Evaluation File Path"},
)
train_on_prompt: bool = field(
default=False,
metadata={"help": "Whether to train on prompt for conversation datasets such as ShareGPT."}
)
conversation_template: Optional[str] = field(
default=None,
metadata={"help": "The template for conversation datasets."}
)
dataset_cache_dir: Optional[str] = field(
default=None,
metadata={"help": ("The path to the dataset cache directory. Useful when the "
"default cache dir (`~/.cache/huggingface/datasets`) has limited space.")}
)
def __post_init__(self):
if self.streaming:
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
@dataclass
class MultiModalDatasetArguments(DatasetArguments):
image_folder: Optional[str] = field(
default=None, metadata={"help": "The folder of the image file."}
)
image_aspect_ratio: Optional[str] = field(
default="pad", metadata={"help": "The ratio type"}
)
is_multimodal: Optional[bool] = field(
default=True, metadata={"help": "Flag for the modality type."}
)
use_image_start_end: Optional[bool] = field(
default=True, metadata={"help": "Flag for the modality type."}
)
sep_style: Optional[str] = field(
default="plain", metadata={"help": "Sep style in multi_modality dataset."}
)
@dataclass
class FinetunerArguments(TrainingArguments):
"""
Adapt transformers.TrainingArguments
"""
eval_dataset_path: Optional[str] = field(
default=None, metadata={"help": "The path of the eval dataset to use."}
)
remove_unused_columns: Optional[bool] = field(
default=False,
metadata={
"help": "whether to remove the unused columns in collate fn"}
)
finetune_part: Optional[str] = field(
default="language_projection",
metadata={
"help": "the module to finetune."
}
)
save_language_projection: Optional[str] = field(
default=False,
metadata={
"help": "whether to save language projection layer in multi-modal models."
}
)
use_lisa: bool = field(
default=False,
metadata={
"help": "whether to use LISA training strategy."
}
)
lisa_activated_layers: int = field(
default=2,
metadata={
"help": "the number of activated layers in LISA."
}
)
lisa_interval_steps: int = field(
default=20,
metadata={
"help": "the number of steps in each freezing interval of LISA, i.e. the selected unfreezed layers are randomly switched every {lisa_interval_steps} steps."
}
)
lisa_layers_attribute: str = field(
default="model.model.layers",
metadata={
"help": "where the layer attribute stores, e.g. model.model.layers"
}
)
use_customized_optim: bool = field(
default=False,
metadata={
"help": "whether to use customized optimizers."
}
)
customized_optim: str = field(
default="sign_sgd",
metadata={
"help": "name of the customized optimizer."
}
)
customized_optim_args: str = field(
default=None,
metadata={
"help": "optional arguments that are supplied."
}
)
optim_dummy_beta1: float = field(
default=0.9,
metadata={
"help": "A useless argument for dummy optimizer, just for tutorial"
}
)
optim_dummy_beta2: float = field(
default=0.999,
metadata={
"help": "A useless argument for dummy optimizer, just for tutorial"
}
)
optim_adam_beta1: float = field(
default=0.9,
metadata={
"help": "Coefficient used for computing running averages of gradient"
}
)
optim_adam_beta2: float = field(
default=0.999,
metadata={
"help": "Coefficient used for computing running averages of squared gradient"
}
)
optim_beta1: float = field(
default=0.9,
metadata={
"help": "Coefficient used for computing running averages of gradient"
}
)
optim_beta2: float = field(
default=0.999,
metadata={
"help": "Coefficient used for computing running averages of squared gradient"
}
)
optim_beta3: float = field(
default=0.9,
metadata={
"help": "Coefficient used for computing running averages of gradient"
}
)
optim_momentum: float = field(
default=0.999,
metadata={
"help": "Coefficient used for the momentum term in optimizers like SGD with momentum"
}
)
optim_weight_decay: float = field(
default=0,
metadata={
"help": "Weight decay (L2 penalty) added to the loss to prevent overfitting"
}
)
@dataclass
class RewardModelTunerArguments(FinetunerArguments):
"""
Arguments for reward modeling.
"""
pass
@dataclass
class EvaluatorArguments:
"""
Define a class EvaluatorArguments using the dataclass decorator. The class contains several optional
parameters that can be used to configure a evaluator.
local_rank : str
For distributed training: local_rank
random_shuffle : bool
use_wandb : bool
random_seed : int, default = 1
output_dir : str, default = './output_dir',
mixed_precision : str, choice from ["bf16","fp16"].
mixed precision mode, whether to use bf16 or fp16
deepspeed :
Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already
loaded json file as a dict
temperature : float
An argument of model.generate in huggingface to control the diversity of generation.
repetition_penalty : float
An argument of model.generate in huggingface to penalize repetitions.
"""
local_rank: int = field(
default=-1,
metadata={"help": "For distributed training: local_rank"
}
)
random_shuffle: Optional[bool] = field(
default=False,
metadata={"help": ""
}
)
use_wandb: Optional[bool] = field(
default=False,
metadata={
"help": (
"When this flag is True, wandb will be enabled"
)
},
)
random_seed: Optional[int] = field(
default=1,
metadata={
"help": (
"used to set random seed"
)
},
)
output_dir: Optional[str] = field(
default="./output_dir",
metadata={"help": "Output path for the inferenced results"},
)
mixed_precision: Optional[str] = field(
default="bf16",
metadata={
"help": (
"mixed precision mode, whether to use bf16 or fp16"
),
"choices": ["bf16", "fp16"],
},
)
deepspeed: Optional[str] = field(
default=None,
metadata={
"help": (
"Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already"
" loaded json file as a dict"
)
},
)
answer_type: Optional[str] = field(
default="text",
metadata={
"help": (
'Question type for answer extraction from the decoder output.'
' Supported types: \n'
' 1) "multiple_choice", e.g. A, B, C, D, ...\n'
' 2) "binary_choice", e.g. yes, no, maybe\n'
' 3) "math", e.g. 1.0, -3.52\n'
' 4) "text", e.g. "I think that it is okay"\n'
' 5) Special treatment for several datasets\n'
' - "gsm8k"\n'
' - "svamp"\n'
' - "asdiv"\n'
' - "addsub"\n'
' - "singleeq"\n'
' - "multiarith"\n'
' - "aqua"\n'
' - "csqa"\n'
' - "strategyqa"\n'
' - "pubmedqa"\n'
' - "medmcqa"\n'
' - "usmle"\n'
)
},
)
prompt_structure: Optional[str] = field(
default="{input}",
metadata={
"help": (
'Prompt structure to facilitate prompt engineering during'
' inference. The model will receive'
' `prompt_structure.format(input=input)` as its input.'
)
},
)
evaluate_block_size: Optional[int] = field(
default=512,
metadata={
"help": (
"the model will have at least block_size tokens for context when calculating the conditional likelihood of any one token"
" (provided there are block_size preceding tokens available to condition on)"
)
},
)
metric: Optional[str] = field(
default="accuracy",
metadata={
"help": "the metric the model will be evaluated on",
"choices": ["ppl", "perplexity", "acc", "accuracy", "nll", "neg_log_likelihood"],
},
)
inference_batch_size_per_device: Optional[int] = field(
default=1,
metadata={
"help": (
"every device will infer {inference_batch_size_per_device}"
" samples in parallel. The inferred results will be concatenaed"
" with inputs and attach a reward."
),
},
)
use_accelerator_for_evaluator: bool = field(
default=False, metadata={"help": "Whether to use Huggingface Accelerator instead of Deepspeed"},
)
temperature: float = field(
default=0,
metadata={"help": "Temperature during inference."},
)
repetition_penalty: float = field(
default=1,
metadata={"help": "Repetition_penalty during inference."},
)
max_new_tokens: int = field(
default=100,
metadata={"help": "Maximum length during inference."},
)
@dataclass
class InferencerArguments:
"""
Define a class InferencerArguments using the dataclass decorator. The class contains several optional
parameters that can be used to configure a inferencer.
local_rank : str
For distributed training: local_rank
random_seed : int, default = 1
inference_batch_size : int, default = 1
deepspeed :
Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already
loaded json file as a dict
mixed_precision : str, choice from ["bf16","fp16"].
mixed precision mode, whether to use bf16 or fp16
temperature : float
An argument of model.generate in huggingface to control the diversity of generation.
repetition_penalty : float
An argument of model.generate in huggingface to penalize repetitions.
use_beam_search : Optional[bool]
Whether to use beam search during inference, By default False.
num_output_sequences : Optional[int]
Number of output sequences to return for the given prompt,
currently only used in vllm inference, By default 8.
top_p : Optional[float]
top_p for sampling, By default 1.0.
top_k : Optional[int]
top_k for sampling, By default -1 (no top_k).
additional_stop_token_ids : Optional[List[int]]
the ids of the end of sentence tokens, By default [].
apply_chat_template : Optional[bool]
Whether to apply chat template, By default True.
save_results : Optional[bool]
Whether to save inference results, By default False.
results_path : Optional[str]
The **json file** path of inference results, By default None.
enable_decode_inference_result : Optional[bool]
Whether to detokenize the inference results.
NOTE: For iterative align pipelines, whether to detokenize depends on
the homogeneity of the policy model and the reward model
(i.e., if they have the same tokenizer).
use_vllm: bool, optional
Whether to use VLLM for inference, By default False.
vllm_tensor_parallel_size: int, optional
The tensor parallel size for VLLM inference.
vllm_gpu_memory_utilization: float, optional
The GPU memory utilization for VLLM inference. The proportion of GPU
memory (per GPU) to use for VLLM inference.
"""
device: str = field(
default="gpu",
metadata={