-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun.py
39 lines (32 loc) · 1.09 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import argparse
import sys
import os
import random
import numpy as np
from omegaconf import OmegaConf
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from training.train import train
def set_random_seed(seed=0):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False # if benchmark=True, deterministic will be False
torch.backends.cudnn.deterministic = True # choose a deterministic algorithm
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--cfg", type=str, default="configs/liger.yaml")
args = parser.parse_args()
return args
def main():
set_random_seed(seed=0)
args = get_args()
config = OmegaConf.load(args.cfg)
output_dir = args.cfg.split('/')[-1].split('.')[0]
config.train.output_dir = os.path.join(config.train.output_dir, output_dir) # 'checkpoints/${filename}'
train(config)
if __name__ == "__main__":
main()