diff --git a/README.md b/README.md index 9015a75e..30813059 100644 --- a/README.md +++ b/README.md @@ -36,6 +36,22 @@ The official implementation of - 🏆 **Achieved `90.1% Top1` accuracy in ImageNet, the most accurate among open-source models** - 🏆 **Achieved `65.5 mAP` on the COCO benchmark dataset for object detection, the only model that exceeded `65.0 mAP`** +## Related Projects +### Foundation Models +- [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver): A Pre-training unified architecture for generic perception for zero-shot and few-shot tasks +- [Uni-Perceiver v2](https://arxiv.org/abs/2211.09808): A generalist model for large-scale vision and vision-language tasks +- [M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining): One-stage pre-training paradigm via maximizing multi-modal mutual information + +### Autonomous Driving +- [BEVFormer](https://github.com/fundamentalvision/BEVFormer): A cutting-edge baseline for camera-based 3D detection +- [BEVFormer v2](https://arxiv.org/abs/2211.10439): Adapting modern image backbones to Bird's-Eye-View recognition via perspective supervision + +## Application in Challenges +- [2022 Waymo 3D Camera-Only Detection Challenge](https://waymo.com/open/challenges/2022/3d-camera-only-detection/): BEVFormer++ **Ranks 1st** based on InternImage +- [nuScenes 3D detection task](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Camera): BEVFormer v2 achieves SOTA performance of 64.8 NDS on nuScenes Camera Only +- [CVPR 2023 Workshop End-to-End Autonomous Driving](https://opendrivelab.com/e2ead/cvpr23): InternImage supports the baseline of the [3D Occupancy Prediction Challenge](https://opendrivelab.com/AD23Challenge.html#Track3) and [OpenLane Topology Challenge](https://opendrivelab.com/AD23Challenge.html#Track1) + + ## News - `Mar 14, 2023`: 🚀 "INTERN-2.5" is released! - `Feb 28, 2023`: 🚀 InternImage is accepted to CVPR 2023! @@ -267,11 +283,6 @@ For more details on building custom ops, please refering to [this document](http -## Related Projects -- Pre-training: [M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining) -- Image-Text Retrieval, Image Captioning, and Visual Question Answering: [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver) -- 3D Perception: [BEVFormer](https://github.com/fundamentalvision/BEVFormer) - ## Citations diff --git a/README_CN.md b/README_CN.md index 241d1943..023c1884 100644 --- a/README_CN.md +++ b/README_CN.md @@ -34,6 +34,23 @@ - 🏆 **图像分类标杆数据集ImageNet `90.1% Top1`准确率,开源模型中准确度最高** - 🏆 **物体检测标杆数据集COCO `65.5 mAP`,唯一超过`65 mAP`的模型** +## 相关项目 +### 多模态基模型 +- [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver): 通用感知任务预训练统一框架, 可直接处理zero-shot和few-shot任务 +- [Uni-Perceiver v2](https://arxiv.org/abs/2211.09808): +用于处理图像/图文任务的通用模型 +- [M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining): 基于最大化输入和目标的互信息的单阶段预训练范式 + +### 自动驾驶 +- [BEVFormer](https://github.com/fundamentalvision/BEVFormer): 基于BEV的新一代纯视觉环视感知方案 +- [BEVFormer v2](https://arxiv.org/abs/2211.10439): 融合BEV感知和透视图检测的两阶段检测器 +## Application in Challenge +- [2022 Waymo 3D Camera-Only Detection Challenge](https://waymo.com/open/challenges/2022/3d-camera-only-detection/): 基于书生2.5 BEVFormer++取得赛道冠军 +- [nuScenes 3D detection task](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Camera): BEVFormer v2 在nuScenes纯视觉检测任务中取得SOTA性能(64.8 NDS) +- [CVPR 2023 Workshop End-to-End Autonomous Driving](https://opendrivelab.com/e2ead/cvpr23): InternImage作为baseline支持了比赛 +[3D Occupancy Prediction Challenge](https://opendrivelab.com/AD23Challenge.html#Track3)和[OpenLane Topology Challenge](https://opendrivelab.com/AD23Challenge.html#Track1) + + ## 最新进展 - 2023年3月14日: 🚀 “书生2.5”发布! - 2023年2月28日: 🚀 InternImage 被CVPR 2023接收! @@ -279,13 +296,6 @@ pip install -e . - -## 相关开源项目 -- 预训练:[M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining) -- 图文检索、图像描述和视觉问答: [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver) -- 3D感知: [BEVFormer](https://github.com/fundamentalvision/BEVFormer) - - ## 引用 若“书生2.5”对您的研究工作有帮助,请参考如下bibtex对我们的工作进行引用。