This repository was archived by the owner on Nov 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathmannbox_file.py
332 lines (281 loc) · 11.9 KB
/
mannbox_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""
Read/Write Mann Box file
Part of weio library: https://github.com/ebranlard/weio
"""
import pandas as pd
import numpy as np
import os
import re
import struct
try:
from .file import File, EmptyFileError, BrokenFormatError
except:
EmptyFileError = type('EmptyFileError', (Exception,),{})
BrokenFormatError = type('BrokenFormatError', (Exception,),{})
File=dict
class MannBoxFile(File):
"""
Read/Write Mann Box file
Main keys
---------
- 'field': velocity field, shape (nx x ny x nz)
Main properties
---------
- 'y', 'z': space coordinates
Main methods
------------
- read, write, toDataFrame, keys, valuesAt, vertProfile, fromTurbSim
Examples
--------
# Open a box
mb = MannBoxFile('Turb.u', N = (1024, 16, 16))
OR
mb = MannBoxFile('Turb_1024x16x16.u')
# Show info
print(mb)
print(mb['field'].shape)
# Use methods to extract relevant values
u = mb.valuesAt(y=10.5, z=90)
z, means, stds = mb.vertProfile
# Write to a new file
mb.write('Output_1024x16x16.u')
Notes
--------
Mann box:
- z is the fast index, then y, then x
- y from from ly/2 to -ly/2 !<<<<<<< IMPORTANT, we will flip it
- z from from -lz/2 to lz/2
- ix==1..nx corresponds to it = nt..1
The field stored in this class has the following properties:
- shape: nx x ny x nz
- y: goes from -ly/2 to ly/2 ! <<<<< IMPORTANT subtlety, it has been flipped
- z: goes from -lz/2 to lz/2
- ix==1..nx corresponds to it = nt..1 (it has not been flipped)
"""
@staticmethod
def defaultExtensions():
return ['.u','.v','.w','.bin']
@staticmethod
def formatName():
return 'HAWC2 Turbulence box'
def __init__(self,filename=None,**kwargs):
""" Initialize the class, if a filename is provided, the box is read.
See the method `read` for keywords arguments.
"""
self.filename = None
if filename:
self.read(filename=filename,**kwargs)
def read(self, filename=None, N=None, dy=1, dz=1, y0=None, z0=0, zMid=None):
""" read MannBox
INPUTS (all optional):
- filename: name of input file to be read
- N: tuple (nx x ny x nz) of box dimension. If None, dimensions are inferred from filename
- y0: minimum value of the y vector (default is -ly/2 where ly = ny x dy)
- z0: minimum value of the z vector (default is 0)
- zMid: mid value of the z vector (default it lz/2 where lz= nz x dz )
SET:
- the keys 'field', array of shape (nx x ny x nz)
NOTE: y-coord in Mann Box goes from Ly/2 -> -Ly/2 but we flip this to -Ly/2 -> Ly/2
"""
if filename:
self.filename = filename
if not self.filename:
raise Exception('No filename provided')
if not os.path.isfile(self.filename):
raise OSError(2,'File not found:',self.filename)
if os.stat(self.filename).st_size == 0:
raise EmptyFileError('File is empty:',self.filename)
if N is None:
# try to infer N's from filename with format 'stringN1xN2xN3'
basename = os.path.splitext(os.path.basename(self.filename))[0]
splits = basename.split('x')
temp = re.findall(r'\d+', basename)
res = list(map(int, temp))
if len(res)>=3:
N=res[-3:]
else:
raise BrokenFormatError('Reading a Mann box requires the knowledge of the dimensions. The dimensions can be inferred from the filename, for instance: `filebase_1024x32x32.u`. Try renaming your file such that the three last digits are the dimensions in x, y and z.')
nx,ny,nz=N
def _read_buffered():
data=np.zeros((nx,ny,nz),dtype=np.float32)
with open(self.filename, mode='rb') as f:
for ix in range(nx):
Buffer = np.frombuffer(f.read(4*ny*nz), dtype=np.float32) # 4-bytes
data[ix,:,:] = np.flip(Buffer.reshape((ny,nz)),0)
return data
def _read_nonbuffered():
data = np.fromfile(self.filename, np.dtype('<f'), -1)
assert len(data) == nx*ny*nz, "Size of turbulence box (%d) does not match nx x ny x nz (%d)" % (len(data),nx*ny*nz)
# Fortran order z the fastest, then y then x. We then flip that back to nx, ny, nz
data = np.transpose(data.reshape(nz, ny, nx, order='F'), axes=(2,1,0))
# The issue is the y-coordinate in Mann Boxes go from Ly/2 -> -Ly/2
# So we flip the y-axis, so that the field is consistent with typical y values
return np.flip(data, 1) # i.e. data=data[:,::-1,:]
# self['field']= _read_nonbuffered()
self['field']= _read_buffered()
self['dy']=dy
self['dz']=dz
self['y0']=y0
self['z0']=z0
self['zMid']=zMid
def write(self, filename=None):
""" Write mann box """
if filename:
self.filename = filename
if not self.filename:
raise Exception('No filename provided')
nx,ny,nz = self['field'].shape
sfmt='<{:d}f'.format(ny*nz)
with open(self.filename, mode='wb') as f:
for ix in np.arange(nx):
data = np.flip(self['field'][ix,:,:],0).ravel() # We have to flip the y axis again
f.write(struct.pack(sfmt, *data))
def __repr__(self):
s='<{} object> with keys:\n'.format(type(self).__name__)
s+='| - filename: {}\n'.format(self.filename)
s+='| - field: shape {}x{}x{}\n'.format(self['field'].shape[0],self['field'].shape[1],self['field'].shape[2])
s+='| min: {}, max: {}, mean: {} \n'.format(np.min(self['field']), np.max(self['field']), np.mean(self['field']))
s+='| - dy, dz: {}, {}\n'.format(self['dy'], self['dz'])
s+='| - y0, z0 zMid: {}, {}, {}\n'.format(self['y0'], self['z0'], self['zMid'])
z=self.z
y=self.y
s+='| * y: [{} ... {}], dy: {}, n: {} \n'.format(y[0],y[-1],self['dy'],len(y))
s+='| * z: [{} ... {}], dz: {}, n: {} \n'.format(z[0],z[-1],self['dz'],len(z))
s+='|useful functions:\n'
s+='| - t(dx, U)\n'
s+='| - valuesAt(y,z), vertProfile, fromTurbSim(*), _iMid()\n'
return s
@property
def z(self):
zmax = self['z0'] + (self['field'].shape[2]-1+0.1)*self['dz']
z = np.arange(self['z0'], zmax, self['dz'])
if self['zMid'] is not None:
z+= self['zMid']-np.mean(z)
return z
@property
def y(self):
if self['y0'] is not None:
ymax = self['y0'] + (self['field'].shape[1]-1+0.1)*self['dy']
y = np.arange(self['y0'], ymax, self['dy'])
else:
ymax = (self['field'].shape[1]-1+0.1)*self['dy']
y = np.arange(0, ymax, self['dy'])
y -= np.mean(y)
return y
def t(self, dx, U):
# 1.5939838 dx - distance (in meters) between points in the x direction (m)
# 99.5 RefHt_Hawc - reference height; the height (in meters) of the vertical center of the grid (m)
# 6.26 URef - Mean u-component wind speed at the reference height (m/s)
dt = dx/U
nt = self['field'].shape[0]
return np.arange(0, dt*(nt-0.5), dt)
# --------------------------------------------------------------------------------}
# --- Extracting relevant data
# --------------------------------------------------------------------------------{
def valuesAt(self, y, z, method='nearest'):
""" return wind speed time series at a point """
if method == 'nearest':
iy, iz = self.closestPoint(y, z)
u = self['field'][:,iy,iz]
else:
raise NotImplementedError()
return u
def closestPoint(self, y, z):
iy = np.argmin(np.abs(self.y-y))
iz = np.argmin(np.abs(self.z-z))
return iy,iz
def _iMid(self):
_, ny, nz = self['field'].shape
return int(ny/2), int(nz/2)
@property
def vertProfile(self):
iy, iz = self._iMid()
m = np.mean(self['field'][:,iy,:], axis=0)
s = np.std (self['field'][:,iy,:], axis=0)
return self.z,m,s
def toDataFrame(self):
dfs={}
ny = len(self.y)
nz = len(self.z)
# Index at mid box
iy,iz = self._iMid()
# Mean vertical profile
z, m, s = self.vertProfile
ti = s/m*100
cols=['z_[m]','vel_[m/s]','sigma_[m/s]','TI_[%]']
data = np.column_stack((z,m[:],s[:],ti[:]))
dfs['VertProfile'] = pd.DataFrame(data = data ,columns = cols)
# Mid time series
u = self['field'][:,iy,iz]
cols=['t/T_[-]','vel_[m/s]']
fake_t = np.linspace(0, 1, len(u))
data = np.column_stack((fake_t,u[:]))
dfs['ZMidLine'] = pd.DataFrame(data = data ,columns = cols)
# ZMin YEnd time series
u = self['field'][:,-1,iz]
cols=['t/T_[-]','vel_[m/s]']
fake_t = np.linspace(0, 1, len(u))
data = np.column_stack((fake_t,u[:]))
dfs['ZMidYEndLine'] = pd.DataFrame(data = data ,columns = cols)
# ZMin YStart time series
u = self['field'][:,0,iz]
cols=['t/T_[-]','vel_[m/s]']
fake_t = np.linspace(0, 1, len(u))
data = np.column_stack((fake_t,u[:]))
dfs['ZMidYStartLine'] = pd.DataFrame(data = data ,columns = cols)
# # Mid crosscorr y
# y, rho_uu_y, rho_vv_y, rho_ww_y = self.crosscorr_y()
# cols = ['y_[m]', 'rho_uu_[-]','rho_vv_[-]','rho_ww_[-]']
# data = np.column_stack((y, rho_uu_y, rho_vv_y, rho_ww_y))
# dfs['Mid_xcorr_y'] = pd.DataFrame(data = data ,columns = cols)
#
# # Mid crosscorr z
# z, rho_uu_z, rho_vv_z, rho_ww_z = self.crosscorr_z()
# cols = ['z_[m]', 'rho_uu_[-]','rho_vv_[-]','rho_ww_[-]']
# data = np.column_stack((z, rho_uu_z, rho_vv_z, rho_ww_z))
# dfs['Mid_xcorr_z'] = pd.DataFrame(data = data ,columns = cols)
#
# # Mid csd
# fc, chi_uu, chi_vv, chi_ww = self.csd_longi()
# cols = ['f_[Hz]','chi_uu_[-]', 'chi_vv_[-]','chi_ww_[-]']
# data = np.column_stack((fc, chi_uu, chi_vv, chi_ww))
# dfs['Mid_csd_longi'] = pd.DataFrame(data = data ,columns = cols)
#
# # Mid csd
# fc, chi_uu, chi_vv, chi_ww = self.csd_lat()
# cols = ['f_[Hz]','chi_uu_[-]', 'chi_vv_[-]','chi_ww_[-]']
# data = np.column_stack((fc, chi_uu, chi_vv, chi_ww))
# dfs['Mid_csd_lat'] = pd.DataFrame(data = data ,columns = cols)
#
# # Mid csd
# fc, chi_uu, chi_vv, chi_ww = self.csd_vert()
# cols = ['f_[Hz]','chi_uu_[-]', 'chi_vv_[-]','chi_ww_[-]']
# data = np.column_stack((fc, chi_uu, chi_vv, chi_ww))
# dfs['Mid_csd_vert'] = pd.DataFrame(data = data ,columns = cols)
return dfs
# Useful converters
def fromTurbSim(self, u, icomp=0, removeConstant=None, removeAllMean=False):
"""
Assumes:
u (3 x nt x ny x nz)
Removes the mean of the turbsim file for the "u" component.
"""
if icomp==0:
if removeAllMean is True:
self['field'] = u[icomp, :, : ,: ]-np.mean(u[icomp,:,:,:],axis=0)
elif removeConstant is not None:
self['field'] = u[icomp, :, : ,: ]-removeConstant
else:
self['field'] = u[icomp, :, : ,: ]
else:
self['field'] = u[icomp, :, : ,: ]
return self
if __name__=='__main__':
mb = MannBoxFile('mini-u_1024x32x32.bin')
# mb = MannBoxFile('mann_bin/mini-u.bin', N=(2,4,8))
# F1=mb['field'].ravel()
# mb.write('mann_bin/mini-u-out.bin')
#
# mb2= MannBoxFile('mann_bin/mini-u-out.bin', N=(2,4,8))
# F2=mb2['field'].ravel()
# print(F1-F2)