This repository was archived by the owner on Nov 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathhawcstab2_ind_file.py
60 lines (50 loc) · 2.25 KB
/
hawcstab2_ind_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import pandas as pd
import os
try:
from .file import File, WrongFormatError, BrokenFormatError
except:
File = dict
class WrongFormatError(Exception): pass
class BrokenFormatError(Exception): pass
class HAWCStab2IndFile(File):
@staticmethod
def defaultExtensions():
return ['.ind', '.txt']
@staticmethod
def formatName():
return 'HAWCStab2 induction file'
def _read(self, *args, **kwargs):
# Reading header line
with open(self.filename,'r',encoding=self.encoding) as f:
header = f.readline().strip()
if len(header)<=0 or header[0]!='#':
raise WrongFormatError('Ind File {}: header line does not start with `#`.'.format(self.filename)+e.args[0])
# Extracting column names
header = '00'+header[1:].strip()
num_and_cols = [s.strip()+']' for s in header.split(']')[:-1]]
cols = [col[2:].strip().replace(' ','_') for col in num_and_cols]
cols = [col.replace('[','_[').replace('__','_') for col in cols]
# Determining type based on number of columns (NOTE: could use col names as well maybe)
NumCol2Type = {38: 'ind', 14: 'fext', 18: 'defl'}
try:
self.type = NumCol2Type[len(cols)]
except Exception as e:
raise WrongFormatError('Ind File {}: '.format(self.filename))
self.colNames=cols
# Reading numerical data
try:
self.data = np.loadtxt(self.filename, skiprows=1)
except Exception as e:
raise BrokenFormatError('Ind File {}: '.format(self.filename)+e.args[0])
if self.data.shape[1]!=len(cols):
raise BrokenFormatError('Ind File {}: inconsistent number of header columns and data columns.'.format(self.filename)+e.args[0])
# Extracting wind speed from filename
self.wsp = float(self.filename.lower().split('_')[-1].rstrip('.ind').lstrip('u'))/1000
def _toDataFrame(self):
key = '{:s} - ws={:06.3f}'.format(self.type,self.wsp)
df= pd.DataFrame(data=self.data, columns=self.colNames)
df.columns.name=key
return df
#dfs = {key: pd.read_csv(self.filename, delim_whitespace=True, names=cols, skiprows=1)}
#return dfs